期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Improvement of thickness deposition uniformity in nickel electroforming for micro mold inserts 被引量:1
1
作者 蒋炳炎 翁灿 +2 位作者 周明勇 吕辉 DRUMMER Dietmar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2536-2541,共6页
Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a... Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process. 展开更多
关键词 deposition uniformity nickel electroforming secondary electrode non-conducting shield movable cathode micro mold insert
下载PDF
Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries 被引量:1
2
作者 Qingwen Li Yulu Liu +7 位作者 Ziheng Zhang Jinjie Chen Zelong Yang Qibo Deng Alexander V.Mumyatov Pavel A.Troshin Guang He Ning Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期64-71,共8页
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ... It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries. 展开更多
关键词 diffusion coefficient dynamic alloy interfaces Li dendrites Li solid solution uniform Li deposition
下载PDF
Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode 被引量:3
3
作者 Haofan Duan Yu You +11 位作者 Gang Wang Xiangze Ou Jin Wen Qiao Huang Pengbo Lyu Yaru Liang Qingyu Li Jianyu Huang Yun‑Xiao Wang Hua‑Kun Liu Shi Xue Dou Wei‑Hong Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期379-393,共15页
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein... The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs. 展开更多
关键词 Polymer ionic channel Li metal batteries Artificial protective layer Uniform Li deposition Electrochemical performances
下载PDF
A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates
4
作者 Yuanpeng Ji Botao Yuan +9 位作者 Jiawei Zhang Zhezhi Liu Shijie Zhong Jipeng Liu Yuanpeng Liu Mengqiu Yang Changguo Wang Chunhui Yang Jiecai Han Weidong He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期265-274,共10页
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu... Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%. 展开更多
关键词 composite separator Li metal anodes piezoelectric materials PVDF-HFP uniform Li deposition
下载PDF
A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode
5
作者 Fanfan Liu Peng Zuo +5 位作者 Jing Li Pengcheng Shi Yu Shao Linwei Chen Yihong Tan Tao Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期282-288,I0007,共8页
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be... Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks. 展开更多
关键词 Lithium metal anode Layered multifunctional framework Ions flux redistribution Electrical insulation/conduction structure Uniform Li deposition
下载PDF
An aqueous BiI_(3)-Zn battery with dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox
6
作者 Qi Deng Fangzhong Liu +3 位作者 Xiongwei Wu Changzhu Li Weibin Zhou Bei Long 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期670-678,I0014,共10页
The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo... The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms. 展开更多
关键词 Aqueous BiI_(3)-Zn battery Dual mechanisms I^(-)-induced uniform zinc deposition Ultralong cyclic life Flexible quasi-solid-state battery
下载PDF
Interface Engineering via Ti_(3)C_(2)T_(x) MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition 被引量:10
7
作者 Chuang Sun Cuiping Wu +2 位作者 Xingxing Gu Chao Wang Qinghong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期95-107,共13页
Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost.However,their practical applications are severely hampered by the poor cyclability... Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost.However,their practical applications are severely hampered by the poor cyclability that caused by the undesired dendrite growth of metallic Zn.Herein,Ti_(3)C_(2)T_(x) MXene was first used as electrolyte additive to facilitate the uniform Zn deposition by controlling the nucleation and growth process of Zn.Such MXene additives can not only be absorbed on Zn foil to induce uniform initial Zn deposition via providing abundant zincophilic-O groups and subsequently participate in the formation of robust solid-electrolyte interface film,but also accelerate ion transportation by reducing the Zn^(2+) concentration gradient at the electrode/electrolyte interface.Consequently,MXene-containing electrolyte realizes dendrite-free Zn plating/striping with high Coulombic efficiency(99.7%)and superior reversibility(stably up to 1180 cycles).When applied in full cell,the Zn-V_(2)O_(5)cell also delivers significantly improved cycling performances.This work provides a facile yet effective method for developing reversible zinc metal batteries. 展开更多
关键词 Zinc metal batteries Ti_(3)C_(2)T_(x)MXene Electrolyte additive Uniform Zn deposition
下载PDF
Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes
8
作者 Jian Yang Tingting Feng +6 位作者 Junming Hou Xinran Li Boyu Chen Cheng Chen Zhi Chen Yaochen Song Mengqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期583-591,共9页
Lithium metal is the ultimate anode material for next-generation high-energy batteries.Yet,the practical application of lithium metal anodes is limited by the formation of Li dendrites and large volume changes.Herein,... Lithium metal is the ultimate anode material for next-generation high-energy batteries.Yet,the practical application of lithium metal anodes is limited by the formation of Li dendrites and large volume changes.Herein,an effective multi-dimensional hybrid flexible film(MD-HFF)composed of iodine ion(0 dimension),CNTs(1 dimension)and graphene(2 dimensions)is designed for regulating Li deposition and mitigating volume changes.The multi-dimensional components serve separate roles:(1)iodine ion enhances the conductivity of the electrode and provides lithiophilic sites,(2)CNTs strengthen interlaminar conductance and mechanical strength,acting as a spring in the layered structure to alleviate volume changes during Li plating and stripping and(3)graphene provides mechanical flexibility and electrical conductivity.The resulting MD-HFF material supports stable Li plating/stripping and high Coulombic efficiency(99%)over 230 cycles at 1 mA cm^(-2) with a deposition capacity of 1 mAh cm^(-2).Theoretical calculations indicate that LiI contributes to the lateral growth of Li on the MD-HFF surface,thereby inhibiting the formation of Li dendrites.When paired with a typical NCM811 cathode,the assembled MD-HFF‖NCM811 cell exhibit improved capability and stable cycling performance.This research serves to guide material design in achieving Li anode materials that do not suffer from dendrite formation and volume changes. 展开更多
关键词 Flexible film Li metal anode Uniform Li deposition Electrode volume change
下载PDF
Stable lithium metal anode enabled by a robust artificial fluorinated hybrid interphase
9
作者 Qiwen Ran Hongyuan Zhao +5 位作者 Jintao Liu Lei Li Qiang Hu Jiangxuan Song Xingquan Liu Sridhar Kormarneni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期612-621,I0014,共11页
One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust ar... One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust artificial fluorinated hybrid interphase consisting of lithium-bismuth(Li3Bi) alloy and lithium-fluoride(LiF) was designed to regulate Li deposition without Li dendrite growth.The obtained hybrid interphase showed the high Li+diffusion rate(3.5 × 10^(-4)S cm^(-1)),high electron resistivity(9.04 × 10^(4)Ω cm),and high mechanical strength(1348 MPa),thus enabling the uniform Li deposition at the Li/SEI interface.Specifically,Li3Bi alloy,as a superionic conductor,accelerated the Li+transport and stabilized the hybrid interphase.Meanwhile,LiF was identified as a superior electron-blocker to inhibit the electron tunneling from the Li anode into the SEI.As a result,the modified Li anode showed the stable Li plating/stripping behaviors over 1000 cycles even at 20 mA cm^(-2).Moreover,it also enabled the Li(50 μm)‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(4.4 mA h cm^(-2)) full cell to achieve an average Coulombic efficiency(CE) of 99.6%and a high-capacity retention of 79.2% after 100 cycles,whereas the bare Li anode only exhibited a low-capacity retention of 8.0%.This work sheds light on the internal mechanism of Li+transport within the hybrid interface and provides an effective approach to stabilize the interface of Li metal anode. 展开更多
关键词 Li metal anode Artificial interphase Li Bi alloy LIF Uniform Li deposition
下载PDF
Vesicle-shaped ZIF-8 shell shielded in 3D carbon cloth for uniform nucleation and growth towards long-life lithium metal anode 被引量:4
10
作者 Yuting Fang Wenlong Cai +4 位作者 Shanshan Zhu Kangli Xu Maogen Zhu Guannan Xiao Yongchun Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期105-110,共6页
Lithium metal has aroused extensive research interests as the anode for next-generation rechargeable batteries.However,the well-known dendritic Li growth and consequent safety issues still impair the long-term cycling... Lithium metal has aroused extensive research interests as the anode for next-generation rechargeable batteries.However,the well-known dendritic Li growth and consequent safety issues still impair the long-term cycling performance.Herein,a hybrid structure composed of 3 D carbon cloth and vesicleshaped hollow ZIF-8 modification shell(HZS@CC)was prepared as a smart host for guiding uniform Li deposition.The long-range interconnected 3 D carbon fiber network enables the reduced local current density with homogeneous electrons distribution.Synergistically,abundant surface polar groups and the ultrastructure on ZIF-8 particles effectively guide a well-distributed Li-ions flow to promote the uniform Li nucleation and growth.As a result,stable Li plating/stripping for 2000 h with a low overpotential(≈15 mV)at 1 mA cm^(-2) were achieved in symmetric cells.Coupling with LiFePO_(4) cathode,the full cell delivered long life over 1200 cycles at 6 C.This research demonstrated that a homogenization guiding of Li-ions is of great importance to better make use of the structural advantage of 3 D hosts and achieve improved electrochemical performance. 展开更多
关键词 3D Li anode MOF ultrastructure Li-ions guiding Uniform deposition Long-life
下载PDF
Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth 被引量:4
11
作者 Wei Liu Pengbo Zhai +8 位作者 Shengjian Qin Jing Xiao Yi Wei Weiwei Yang Shiqiang Cui Qian Chen Chunqiao Jin Shubin Yang Yongji Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期463-469,共7页
Li metal,possessing advantages of high theoretical specific capacity and low electrochemical potential,is regarded as the most promising anode material for next-generation batteries.However,despite decades of intensiv... Li metal,possessing advantages of high theoretical specific capacity and low electrochemical potential,is regarded as the most promising anode material for next-generation batteries.However,despite decades of intensive research,its practical application is still hindered by safety hazard and low Coulombic efficiency,which is primarily caused by dendritic Li deposition.To address this issue,restraining dendrite growth at the nucleation stage is deemed as the most effective method.By utilizing the difference of electronegativity between boron atoms and carbon atoms,carbon atoms around boron atoms in boron-doped graphene(BG)turn into lithiophilic sites,which can enhance the adsorption capacity to Li^(+)at the nucleation stage.Consequently,an ultralow overpotential of 10 mV at a current density of 0.5 mA/cm^(2) and a high average Coulombic efficiency of 98.54%over more than 140 cycles with an areal capacity of 2 mAh/cm^(2) at a current density of 1 m A/cm^(2) were achieved.BG-Li|LiFePO_(4) full cells delivered a long lifespan of480 cycles at 0.5 C and excellent rate capability.This work provides a novel method for rational design of dendrite-free Li metal batteries by regulating nucleation process. 展开更多
关键词 Lithium metal anode B-doped graphene Lithophilic transition DFT calculation Uniform Li deposition
下载PDF
Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes 被引量:3
12
作者 Gan Luo Xiaolin Hu +8 位作者 Wei Liu Guanjie Lu Qiannan Zhao Jie Wen Jian Liang Guangsheng Huang Bin Jiang Chaohe Xu Fusheng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期285-291,共7页
Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition... Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition of Li during plating/stripping and the formation of uncontrolled Li dendrites,which might cause poor battery performance and serious safety problems,are demonstrating to be a huge challenge for its practical application.Here,we show that a flexible and free-standing film hybriding with polypyrrole(PPy) nanotubes and reduced graphene oxide(rGO) can significantly regulate the Li nucleation and deposition,and further prohibit the formation of Li dendrites,owing to the large specific surface area,rich of nitrogen functional groups and porous structures.Finally,the high Coulombic efficiency and stable Li plating/stripping cycling performance with 98% for 230 cycles at 0.5 mA cm^(-2) and more than 900 hours stable lifespan are achieved.No Li dendrites form even at a Li deposition capacity as high as4.0 mA h cm^(-2).Besides,the designed PPy/rGO hybrid anode scaffold can also drive a superior battery performance in the lithium-metal full cell applications. 展开更多
关键词 Lithium metal anode Polypyrrole nanotube Coulombic efficiency Lithium dendrites Uniform lithium deposition
下载PDF
A 3D conducting scaffold with in-situ grown lithiophilic Ni_(2)P nanoarrays for high stability lithium metal anodes 被引量:2
13
作者 Huai Jiang Hailin Fan +6 位作者 Zexun Han Bo Hong Feixiang Wu Kai Zhang Zhian Zhang Jing Fang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期301-309,共9页
Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect an... Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect and uncontrollable dendrite growth.Herein,we design the in-situ grown lithiophilic Ni_(2)P nanoarrays inside nickel foam(PNF).Uniform Ni_(2)P nanoarrays coating presents a very low nucleation overpotential,which induces the homogeneous Li deposition in the entire spaces of three-dimensional(3D)metal framework.Specifically,the lithiophilic Ni_(2)P nanoarrays possess characteristics of electrical conductivity and structural stability,which have almost no expansion and damage during repeating Li plating/stripping.Therefore,they chronically inhibit the growth of Li dendrites.This results in an outstanding Coulombic efficiency(CE)of 98% at 3 mA cm^(-2) and an ultra long cycling life over 2000 cycles with a low overpotential.Consequently,the PNF-Li||LiFePO_(4) battery maintains a capacity retention of 95.3% with a stable CE of 99.9% over 500 cycles at 2 C. 展开更多
关键词 Li metal anodes Ni_(2)P nanoarrays 3D metal framework Uniform Li deposition Superior lithiophilicity
下载PDF
Experimental and Modeling Studies on the Chemical Vapor Infiltration with Respect to the Effects of Thermal Gradient and Other Operating Parameters 被引量:1
14
作者 Kyung Do Joo Do Hoon Kim Gui Yung Chung 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期525-532,共8页
Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visu... Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visualizations of the intrinsic effects of these parameters. A uniform deposition in the preform was obtained with a gradually increasing temperature along the gas flow. The uniformity of deposition through the preform got improved with increasing deposition time. Results of numerical modeling estimated the experimental data very well when the pre-exponential factor of the overall rate of carbon deposition from propane reported by Vaidyaraman[1] was multiplied by 4. The average density of a preform increased by about 3 times from 0.38 to 1.15 g/cm3 after 60 hr deposition with a thermal gradient under the conditions of 3% propane in nitrogen and 840 to 900 ℃. 展开更多
关键词 TG-CVI propane C/C composites uniform deposition mathematical modeling
下载PDF
Layered Ag-graphene films synthesized by Gamma ray irradiation for stable lithium metal ano des in carb on ate-based electrolytes
15
作者 Jiaxiang Liu Haoshen Ma +5 位作者 Zhipeng Wen Huiyang Li Jin Yang Nanbiao Pei Peng Zhang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期354-363,I0010,共11页
Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change ... Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change and den drites formation of lithium metal anode restrict the applicati on.The unc on trolled n ucleati on of lithium caused by the non uniform multi-physical field distributions,can lead to the undesirable lithium deposition.Herein,a graphene composite uniformly loaded with Ag nano-particles(Ag NPs)is prepared through a facile Gamma ray irradiation method and assembled into self-supported film with layered structure(Ag-rGO film).Whe n such film is used as a lithium metal an ode host,the uncontrolled deposition is converted into a highly nucleation-induced process.On one hand,the Ag NPs distributed between the in terlayers of graphe ne can preferentially induce lithium nu cleati on and en able uniform deposition morphology of lithium between interlayers.On the other hand,the stable layered graphene structure can accommodate volume change,stabilize the interface between anode and electrolyte and inhibit dendrites formation.Therefore,the layered Ag-rGO film as anode host can reach a high Coulombic efficiency over 93.3% for 200 cycle(786 h)at a current density of 1 mA cm^(-2) for 2 mAh cm^(-2) in carbonate-based electrolyte.This work proposes a facile Gamma ray irradiation method to prepare metal/3D-skeleton structure as lithium anode host and demonstrates the potential to regulate the lithium metal deposition behaviors via manipulating the distribution of lithiophilic metal(e.g.Ag)in 3D frameworks.This may offer a practicable thinking for the subsequent design of the lithium metal anode. 展开更多
关键词 Lithium metal anode Gamma Ray irradiation Ag nano-particles Inductive effect Layered structure Uniform lithium deposition
下载PDF
An in-situ generated Bi-based sodiophilic substrate with high structural stability for high-performance sodium metal batteries
16
作者 Lulu Li Ming Zhu +5 位作者 Guanyao Wang Fangfang Yu Liaoyong Wen Hua-Kun Liu Shi-Xue Dou Chao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期595-603,I0016,共10页
Sodium(Na)metal anode exhibits a potential candidate in next-generation rechargeable batteries owing to its advantages of high earth abundance and low cost.Unfortunately,the practical development of sodium metal batte... Sodium(Na)metal anode exhibits a potential candidate in next-generation rechargeable batteries owing to its advantages of high earth abundance and low cost.Unfortunately,the practical development of sodium metal batteries is inherently plagued by challenges such as the side reactions and the growth of Na dendrites.Herein we report a highly stable Bi-based“sodiophilic”substrate to stabilize Na anode,which is created by in-situ electrochemical reactions of 3D hierarchical porous Bi_(2)MoO_(6)(BMO)microspheres.BMO is initially transformed into the Bi“nanoseeds”embedded in the Na-Mo-O matrix.Subsequently,the Bi nanoseeds working as preferential nucleation sites through the formation of BiNa alloy enable the non-dendritic Na deposition.The asymmetric cells based on such BMO-based substrate can deliver a long-term cycling for 600 cycles at a large capacity of 4 m Ah cm^(-2) and for 800 cycles at a high current density of 10 m A cm^(-2).Even at a high depth of discharge(66.67%),the Na-predeposited BMO(Na@BMO)electrodes can cycle for more than 1600 h.The limited Na@BMO anodes coupled with the Na_(3)V_(2)(PO_(4))_(3) cathodes(N/P ratio of 3)in full cells also show excellent electrochemical performance with a capacity retention of about 97.4%after 1100 cycles at 2 C. 展开更多
关键词 Sodium metal anode Bi_(2)MoO_(6)microspheres Sodiophilic substrate Conversion and alloying reaction Uniform sodium deposition
下载PDF
Sulfonate-functionalization in Zn-iodine batteries as one stone kills two birds:iodine limiter and uniform Zn plating guidance layer
17
作者 Wentao Qu Chenyu Wen +2 位作者 Baohui Chen Yong Cai Ming Zhang 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2889-2897,共9页
Aqueous Zn-iodine(Zn-I_(2))batteries have attracted extensive research interest as an emerging redox conversion energy storage system due to the low cost and high safety.However,the shuttling effects of polyiodides ar... Aqueous Zn-iodine(Zn-I_(2))batteries have attracted extensive research interest as an emerging redox conversion energy storage system due to the low cost and high safety.However,the shuttling effects of polyiodides arising from incomplete redox conversion and inhomogeneous Zn plating on the Zn anode surface always hinder the commercial application of Zn-I_(2)batteries.In this work,a two-birds-with-one-stone strategy is reported for long-life Zn-I_(2)batteries.Based on the strategy,the sulfonate-functionalized carbon fiber not only acts as the excellent iodine limiter to inhibit iodine species shuttling,but also as the uniform Zn plating guidance layer on the Zn anode surface to prevent the inhomogeneous deposition of Zn^(2+).Consequently,a superior cycling stability(a capacity of 124 mAh g^(-1)after 10,000 cycles at 5 A g^(-1))is achieved.Theoretical calculations illustrate that sulfonate groups successfully induce charge redistribution on the carbon substrate,thereby strengthening the electronic interactions of the iodine species with the carbon substrate.The charge-enriched sulfonate groups can guide the uniform deposition of Zn^(2+)through a strong Coulombic effect with Zn^(2+).This work gives a new perspective on the integrated design of cathodes and anodes for rechargeable batteries. 展开更多
关键词 sulfonate-functionalization iodine limiter uniform deposition Zn plating guidance layer Zn-iodine batteries
原文传递
Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes
18
作者 Chen Liu Yuxin Zhu +6 位作者 Shuanlong Di Jiarui He Ping Niu Antonios Kelarakis Marta Krysmann Shulan Wang Li Li 《Electron》 2024年第1期177-187,共11页
Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries.Unlike conventional interfacial modification strategies that are primarily foc... Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries.Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning,herein,we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment.Interestingly,the highly ordered structure along with sufficient functional polar groups and pre-intercalated Kþendows the coating with high ionic conductivity,strong hydrophilicity,and accelerated ion diffusion kinetics.Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn.Benefiting from the aforementioned features,the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5%after 1500 cycles.This work proposes a new conceptual strategy for Zn anode protection. 展开更多
关键词 crystalline carbon nitride crystallinity engineering long cycling life uniform Zn deposition Zn metal anode
原文传递
NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes 被引量:2
19
作者 Yangyang Xie Congyin Liu +3 位作者 Jingqiang Zheng Huangxu Li Liuyun Zhang Zhian Zhang 《Nano Research》 SCIE EI CSCD 2023年第2期2436-2444,共9页
The practical application of Na metal anode is plagued by the dendrite growth,unstable solid electrolyte interphase(SEI)formation and volume change during the cycling process.Herein,poly(tetrafluoroethylene)(noted as ... The practical application of Na metal anode is plagued by the dendrite growth,unstable solid electrolyte interphase(SEI)formation and volume change during the cycling process.Herein,poly(tetrafluoroethylene)(noted as PTFE)coating microcrystalline graphite is designed as the sodium metal anode host by a facile and cost-effective strategy.The isotropous microcrystalline graphite(MG)is conducive to guiding Na+to form a co-intercalation structure into MG.And the PTFE coating layer can form NaF as artificial SEI film for uniform ion transport and deposition.As a result,the gained PTFE coating MG electrode can deliver a long-life span over 1,200 cycles with an average Coulombic efficiency(CE)of 99.88%.To note,almost the CE in each cycle is around 99.8%–100%.When assembled with Na_(3)V_(2)(PO_(4))_(2)F_(3)cathode as full cells,the full cell paired with PTFE coating MG electrode can operate much stable than that of MG electrode for the existence of PTFE coating layer.Even utilized as sodium-free Na metal anode paired with Na_(3)V_(2)(PO_(4))_(2)F_(3)cathode,it can also deliver a high initial CE of 76.27%at 0.5 C.After 100 cycles,it still has a high discharge capacity of 83.5 mAh·g^(−1). 展开更多
关键词 Na metal anodes poly(tetrafluoroethylene)(PTFE) microcrystalline graphite co-intercalation uniform deposition
原文传递
Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes 被引量:2
20
作者 Bofang Tian Zhenxin Huang +9 位作者 Xilian Xu Xiehong Cao Hui Wang Tingting Xu Dezhi Kong Zhuangfei Zhang Jie Xu Jinhao Zang Xinjian Li Ye Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期50-58,共9页
Although lithium metal and sodium metal are promised as ideal anodes for lithium ion batteries(LIBs)and sodium ion batteries(SIBs),they still suffer from inevitable dendrite growth.In light of this,silver nanoparticle... Although lithium metal and sodium metal are promised as ideal anodes for lithium ion batteries(LIBs)and sodium ion batteries(SIBs),they still suffer from inevitable dendrite growth.In light of this,silver nanoparticles(Ag NPs)are sputtered onto three-dimensional carbon nanotube decorated graphene foam(3D CNT-GF)to construct superior 3D Ag/CNT-GF composite matrix for lithium metal anodes(LMAs)and sodium metal anodes(SMAs).With this design,lithiophilic/sodiophilic Ag NPs could provide favorable sites to guide Li/Na metal nucleation and growth,thus leading to low nucleation overpotentials,high Coulombic efficiency and long cycle performance.Accordingly,3D Ag/CNT-GF electrodes can stably cy-cle for 1000 and 750 cycles at 3 mA cm^(−2)with 1 mAh cm^(−2)for SMAs and LMAs,respectively.More attractively,it can also stably sustain 300 cycles(SMAs)and 500 cycles(LMAs)at a large current den-sity of 5 mA cm^(−2)with 1 mAh cm^(−2).The excellent electrochemical performance can be attributed to the lithiophilic/sodiophilic electrode surface,3D porous electrode structure and the dendrite-free mor-phology as demonstrated by ex-situ scanning electron microscopy(SEM)and in-situ optical microscopy analyses.Furthermore,full cells based on Na@3D Ag/CNT-GF||Na 3 V 2(PO 4)3@carbon(NVP@C)and Li@3D Ag/CNT-GF||LiFePO 4(LFP)could deliver highly reversible capacities of 90.1 and 106.4 mAh g^(−1),respec-tively,at 100 mA g^(−1)after 200 cycles for SIBs and LIBs,respectively.This work demonstrates a novel 3D Ag/CNT-GF matrix for boosting Li/Na deposition stability for their future applications. 展开更多
关键词 Li/Na metal anodes Lithiophilic/sodiophilic 3D Ag/CNT-GF NANOSTRUCTURE Dendrite-free morphology Uniform deposition In-situ optical microscopy investigation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部