Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and...Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.展开更多
The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± ...The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.展开更多
Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the se...Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the section beneath the bottom of the perennial salt lake,including the timing,展开更多
1 Introduction The Tongbai-Dabie area has experienced multistage plate subduction-collision activities,resulting in the development of a series of nearly EW-trending ductileshear zones with different levels,scales,and...1 Introduction The Tongbai-Dabie area has experienced multistage plate subduction-collision activities,resulting in the development of a series of nearly EW-trending ductileshear zones with different levels,scales,and characteristics(Wu et al.,2012).These ductile shear zones have controlled the northern Tongbai-Dabie展开更多
Gaotaigou borate deposit in Ji'an area, southeastern Jilin, is located in the easten end of Liaoning-Jilin (Liaoji)Proterozoic paleo-rift, which is a medium-sized deposit and makes up 67% of the total borate reser...Gaotaigou borate deposit in Ji'an area, southeastern Jilin, is located in the easten end of Liaoning-Jilin (Liaoji)Proterozoic paleo-rift, which is a medium-sized deposit and makes up 67% of the total borate reserves in Jilin Province.The original borate ore bodies were formed by sedimentary exhalative process in Paleoproterozoic, but were activated and enriched by later metamorphism. In late stage of metamorphism, hydrothermal fluid of metamorphic origin made wallrocks be altered and the borate ore bodies be reformed. Ore bodies are strictly controlled by strata and their lithologies. In addition, the shape and spatial distribution of ore bodies are also defined by the Gaotaigou syncline. Combined with the ore-controlling factors and mineralizing features, it has been proposed that Gaotaigou borate deposit is a metamorphosed and hydrothermally altered sedimentary exhalative deposit.展开更多
Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb...Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.展开更多
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, a...Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.展开更多
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within th...The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within the Guojialing granite. In this study, we report the mineral chemistry of pyrite, as well as the S, Pb, and HeO isotope data of the Heilangou gold deposit. The chemical composition of pyrite in the Heilangou gold deposit indicates that the associated gold deposit is a typical magmatic hydrothermal one. The geochemical signatures and crystal structure of pyrite show that the ore-forming materials have been derived from the crust. The S isotope data of the pyrites from Heilangou show an overall range from 5.5 to 7.8&and an average of 6.7&. The S isotope data in this deposit are similar to those from the deposits in the Jiaodong gold belt. The Pb and S isotope variations are small in the Heilangou gold deposit. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are 17.4653e17.5958, 15.5105e15.5746 and 38.0749e38.4361, respec-tively. These data plot between the lower crust and the orogenic belt. The Pb isotope data in the Heilangou gold deposit are similar to those in the Linglong gold deposit. From the Qixia gold area (the Liukou and Majiayao gold deposits) to the MupingeRushan gold belt (Rushan gold deposit) to the ZhaoeYe gold belt (the Linglong, Sanshandao and Jiaojia gold deposits), the 206Pb/204Pb ratios progressively increase. The DeO isotope data obtained from quartz separates suggest that the ore-forming fluid was similar to a mixture of magmatic and meteoric waters. These results suggest that the ore-forming elements were primarily from source fluids derived from the lower crust.展开更多
This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. Th...This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. The system frame map is built, from quick exploration in the field to the rapid building of a model indoors. The main research points of location prognosis are also discussed in the paper, which include: 1) integrating the location with the surrounding geological areas, microscopic with macroscopic; 2) analyzing and synthesizing all geological information of different levels, depths and aspects; 3) laying stress on mineralization series; 4) paying attention to the study of the distribution law of ore bodies; 5) introducing the theory of nonlinear dynamics of ore forming processes to ordinary static prognosis; 6) the necessity of the geophysical me thod in recovering information of concealed ore bodies; 7) the combination of all kinds of geology, geophysics, geochemistry and remote sensing methods.展开更多
In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on t...In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.展开更多
Five gold deposits (mineralization) were found in the study area by means of geologi</span><span style="font-family:Verdana;">cal mapping, soil geochemical survey and trough exploration engineeri...Five gold deposits (mineralization) were found in the study area by means of geologi</span><span style="font-family:Verdana;">cal mapping, soil geochemical survey and trough exploration engineering. The</span><span style="font-family:Verdana;"> ore-bearing lithology is mainly metam</span></span><span style="font-family:Verdana;">orphic feldspar sandstone of </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">Upper Carboniferous Benbatu Formation, and the gold (mineralization) body is controlled by both structural factors </span><span style="font-family:Verdana;">and stratigraphic factors of </span></span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Upper Carboniferous Benbatu Formation. The genetic</span><span style="font-family:""><span style="font-family:Verdana;"> type is preliminary concluded to be volcanic hyd</span><span style="color:black;font-family:Verdana;">rothermal type, and the metallogenic age is late Variscan. In this paper, by studying the geological characteristics and metallogenic geological conditions of the gold orebody in the area, a regional prospecting model has been established, which is of great significance to better guide the prospecting work of similar gold deposits in the area and the region.展开更多
基金the financial support from the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0805)the postdoctoral project of Qinghai Institute of Salt Lakes(Grant No.E260DZ0401)+1 种基金the Kunlun Talent Project in Qinghai Province(Grant No.E340DZ0801)the Qinghai Provincial Department of Science and Technology Project(Grant No.2024-ZJ-722)。
文摘Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.
文摘The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.
文摘Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the section beneath the bottom of the perennial salt lake,including the timing,
文摘1 Introduction The Tongbai-Dabie area has experienced multistage plate subduction-collision activities,resulting in the development of a series of nearly EW-trending ductileshear zones with different levels,scales,and characteristics(Wu et al.,2012).These ductile shear zones have controlled the northern Tongbai-Dabie
文摘Gaotaigou borate deposit in Ji'an area, southeastern Jilin, is located in the easten end of Liaoning-Jilin (Liaoji)Proterozoic paleo-rift, which is a medium-sized deposit and makes up 67% of the total borate reserves in Jilin Province.The original borate ore bodies were formed by sedimentary exhalative process in Paleoproterozoic, but were activated and enriched by later metamorphism. In late stage of metamorphism, hydrothermal fluid of metamorphic origin made wallrocks be altered and the borate ore bodies be reformed. Ore bodies are strictly controlled by strata and their lithologies. In addition, the shape and spatial distribution of ore bodies are also defined by the Gaotaigou syncline. Combined with the ore-controlling factors and mineralizing features, it has been proposed that Gaotaigou borate deposit is a metamorphosed and hydrothermally altered sedimentary exhalative deposit.
基金supported by the National Basic Research Program of China(grant no.2007CB411402)
文摘Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.
基金National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05006-003)the Fundamental Research Funds for the Central Universities (Grant No.14CX06070A)
文摘Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
基金funded by National Natural Science Foundation Major Research Plan Key Support Project (Grant No. 90914002)the Xinyang Normal University high-level talented person start-up project in China
文摘The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within the Guojialing granite. In this study, we report the mineral chemistry of pyrite, as well as the S, Pb, and HeO isotope data of the Heilangou gold deposit. The chemical composition of pyrite in the Heilangou gold deposit indicates that the associated gold deposit is a typical magmatic hydrothermal one. The geochemical signatures and crystal structure of pyrite show that the ore-forming materials have been derived from the crust. The S isotope data of the pyrites from Heilangou show an overall range from 5.5 to 7.8&amp;and an average of 6.7&amp;. The S isotope data in this deposit are similar to those from the deposits in the Jiaodong gold belt. The Pb and S isotope variations are small in the Heilangou gold deposit. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are 17.4653e17.5958, 15.5105e15.5746 and 38.0749e38.4361, respec-tively. These data plot between the lower crust and the orogenic belt. The Pb isotope data in the Heilangou gold deposit are similar to those in the Linglong gold deposit. From the Qixia gold area (the Liukou and Majiayao gold deposits) to the MupingeRushan gold belt (Rushan gold deposit) to the ZhaoeYe gold belt (the Linglong, Sanshandao and Jiaojia gold deposits), the 206Pb/204Pb ratios progressively increase. The DeO isotope data obtained from quartz separates suggest that the ore-forming fluid was similar to a mixture of magmatic and meteoric waters. These results suggest that the ore-forming elements were primarily from source fluids derived from the lower crust.
文摘This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. The system frame map is built, from quick exploration in the field to the rapid building of a model indoors. The main research points of location prognosis are also discussed in the paper, which include: 1) integrating the location with the surrounding geological areas, microscopic with macroscopic; 2) analyzing and synthesizing all geological information of different levels, depths and aspects; 3) laying stress on mineralization series; 4) paying attention to the study of the distribution law of ore bodies; 5) introducing the theory of nonlinear dynamics of ore forming processes to ordinary static prognosis; 6) the necessity of the geophysical me thod in recovering information of concealed ore bodies; 7) the combination of all kinds of geology, geophysics, geochemistry and remote sensing methods.
文摘In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.
文摘Five gold deposits (mineralization) were found in the study area by means of geologi</span><span style="font-family:Verdana;">cal mapping, soil geochemical survey and trough exploration engineering. The</span><span style="font-family:Verdana;"> ore-bearing lithology is mainly metam</span></span><span style="font-family:Verdana;">orphic feldspar sandstone of </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">Upper Carboniferous Benbatu Formation, and the gold (mineralization) body is controlled by both structural factors </span><span style="font-family:Verdana;">and stratigraphic factors of </span></span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Upper Carboniferous Benbatu Formation. The genetic</span><span style="font-family:""><span style="font-family:Verdana;"> type is preliminary concluded to be volcanic hyd</span><span style="color:black;font-family:Verdana;">rothermal type, and the metallogenic age is late Variscan. In this paper, by studying the geological characteristics and metallogenic geological conditions of the gold orebody in the area, a regional prospecting model has been established, which is of great significance to better guide the prospecting work of similar gold deposits in the area and the region.