To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusi...To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusing on both feature representation and human tracking mechanism.Feature representation describes individual by using both improved local appearance descriptors and statistical geometric parameters.The improved feature descriptors can be extracted quickly and make the human feature more discriminative.Adaptive human tracking mechanism is based on feature representation and it arranges the human image blobs in field of view into matrix.Primary appearance models are created to include the maximum inter-camera appearance information captured from different visual angles.The persons appeared in camera are first filtered by statistical geometric parameters.Then the one among the filtered persons who has the maximum matching scale with the primary models is determined to be the target person.Subsequently,the image blobs of the target person are used to update and generate new primary appearance models for the next camera,thus being robust to visual angle changes.Experimental results prove the excellence of the feature representation and show the good generalization capability of tracking mechanism as well as its robustness to condition variables.展开更多
基金funded by the Natural Science Foundation of Jiangsu Province(No.BK2012389)the National Natural Science Foundation of China(Nos.71303110,91024024)the Foundation of Graduate Innovation Center in NUAA(Nos.kfjj201471,kfjj201473)
文摘To track human across non-overlapping cameras in depression angles for applications such as multi-airplane visual human tracking and urban multi-camera surveillance,an adaptive human tracking method is proposed,focusing on both feature representation and human tracking mechanism.Feature representation describes individual by using both improved local appearance descriptors and statistical geometric parameters.The improved feature descriptors can be extracted quickly and make the human feature more discriminative.Adaptive human tracking mechanism is based on feature representation and it arranges the human image blobs in field of view into matrix.Primary appearance models are created to include the maximum inter-camera appearance information captured from different visual angles.The persons appeared in camera are first filtered by statistical geometric parameters.Then the one among the filtered persons who has the maximum matching scale with the primary models is determined to be the target person.Subsequently,the image blobs of the target person are used to update and generate new primary appearance models for the next camera,thus being robust to visual angle changes.Experimental results prove the excellence of the feature representation and show the good generalization capability of tracking mechanism as well as its robustness to condition variables.