To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
Introduction: Endotracheal suction plays a crucial role in the management of mechanically ventilated patients. This study aims to evaluate the clinical effectiveness and safety of suction tubes with markings in mechan...Introduction: Endotracheal suction plays a crucial role in the management of mechanically ventilated patients. This study aims to evaluate the clinical effectiveness and safety of suction tubes with markings in mechanically ventilated pediatric patients. Materials and Methods: A randomized assignment was carried out on a cohort of 52 pediatric patients who underwent mechanical ventilation in the Pediatric Intensive Care Unit at the Third Affiliated Hospital of Sun Yat-sen University, covering the period from January 2022 to December 2022. These patients were divided into two groups: an improved group (n = 26) utilizing marked suction tubes, and a regular group (n = 26) employing conventional suction tubes. The objective of our study was to evaluate the clinical effectiveness of marked suction tubes. Results: The effects of the improved group on the vital signs of children undergoing mechanical ventilation were small and statistically significant compared with the regular group (p < 0.05). Additionally, the improved group exhibited a reduced frequency of sputum suction, shorter mechanical ventilation duration, and fewer days of hospitalization in the PICU compared to the regular group during the ventilation period. Notably, the difference in the duration of PICU hospitalization was statistically significant (p < 0.05). Moreover, the incidence of adverse reactions in the improved group was notably lower, with statistically significant differences observed in airway mucous membrane damage and irritating cough when compared to the regular group (p < 0.05). Conclusion: The utilization of marked suction tubes provides clinical nurses with clear guidance for performing suctioning with ease, efficiency and safety. Consequently, advocating for the widespread implementation of marked suction tubes in clinical practice is a commendable pursuit.展开更多
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
文摘Introduction: Endotracheal suction plays a crucial role in the management of mechanically ventilated patients. This study aims to evaluate the clinical effectiveness and safety of suction tubes with markings in mechanically ventilated pediatric patients. Materials and Methods: A randomized assignment was carried out on a cohort of 52 pediatric patients who underwent mechanical ventilation in the Pediatric Intensive Care Unit at the Third Affiliated Hospital of Sun Yat-sen University, covering the period from January 2022 to December 2022. These patients were divided into two groups: an improved group (n = 26) utilizing marked suction tubes, and a regular group (n = 26) employing conventional suction tubes. The objective of our study was to evaluate the clinical effectiveness of marked suction tubes. Results: The effects of the improved group on the vital signs of children undergoing mechanical ventilation were small and statistically significant compared with the regular group (p < 0.05). Additionally, the improved group exhibited a reduced frequency of sputum suction, shorter mechanical ventilation duration, and fewer days of hospitalization in the PICU compared to the regular group during the ventilation period. Notably, the difference in the duration of PICU hospitalization was statistically significant (p < 0.05). Moreover, the incidence of adverse reactions in the improved group was notably lower, with statistically significant differences observed in airway mucous membrane damage and irritating cough when compared to the regular group (p < 0.05). Conclusion: The utilization of marked suction tubes provides clinical nurses with clear guidance for performing suctioning with ease, efficiency and safety. Consequently, advocating for the widespread implementation of marked suction tubes in clinical practice is a commendable pursuit.