Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore...Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.展开更多
Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside th...Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.展开更多
Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious pro...Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.展开更多
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ...A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.展开更多
Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the dr...Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.展开更多
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun...In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.展开更多
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de...Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.展开更多
Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still ...Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design.展开更多
Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupe...Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.展开更多
For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the ...For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.展开更多
Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods dire...Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods directly feed the original RGB image into the model to extract depth features without avoiding the interference of depth-irrelevant information on depth-estimation accuracy,which leads to inferior performance.Methods To remove the influence of depth-irrelevant information and improve the depth-prediction accuracy,we propose RADepthNet,a novel reflectance-guided network that fuses boundary features.Specifically,our method predicts depth maps using the following three steps:(1)Intrinsic Image Decomposition.We propose a reflectance extraction module consisting of an encoder-decoder structure to extract the depth-related reflectance.Through an ablation study,we demonstrate that the module can reduce the influence of illumination on depth estimation.(2)Boundary Detection.A boundary extraction module,consisting of an encoder,refinement block,and upsample block,was proposed to better predict the depth at object boundaries utilizing gradient constraints.(3)Depth Prediction Module.We use an encoder different from(2)to obtain depth features from the reflectance map and fuse boundary features to predict depth.In addition,we proposed FIFADataset,a depth-estimation dataset applied in soccer scenarios.Results Extensive experiments on a public dataset and our proposed FIFADataset show that our method achieves state-of-the-art performance.展开更多
Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered ...Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span>展开更多
This article describes a novel approach for enhancing the three-dimensional(3D)point cloud reconstruction for light field microscopy(LFM)using U-net architecture-based fully convolutional neural network(CNN).Since the...This article describes a novel approach for enhancing the three-dimensional(3D)point cloud reconstruction for light field microscopy(LFM)using U-net architecture-based fully convolutional neural network(CNN).Since the directional view of the LFM is limited,noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds.The existing methods suffer from these problems due to the self-occlusion of the model.This manuscript proposes a deep fusion learning(DL)method that combines a 3D CNN with a U-Net-based model as a feature extractor.The sub-aperture images obtained from the light field microscopy are aligned to form a light field data cube for preprocessing.A multi-stream 3D CNNs and U-net architecture are applied to obtain the depth feature fromthe directional sub-aperture LF data cube.For the enhancement of the depthmap,dual iteration-based weighted median filtering(WMF)is used to reduce surface noise and enhance the accuracy of the reconstruction.Generating a 3D point cloud involves combining two key elements:the enhanced depth map and the central view of the light field image.The proposed method is validated using synthesized Heidelberg Collaboratory for Image Processing(HCI)and real-world LFM datasets.The results are compared with different state-of-the-art methods.The structural similarity index(SSIM)gain for boxes,cotton,pillow,and pens are 0.9760,0.9806,0.9940,and 0.9907,respectively.Moreover,the discrete entropy(DE)value for LFM depth maps exhibited better performance than other existing methods.展开更多
Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulner...Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulnerable to illumination variance, occlusions, texture-less regions, as well as moving objects, making them not robust enough to deal with various scenes. To address this challenge, we study two kinds of robust cross-view consistency in this paper. Firstly, the spatial offset field between adjacent frames is obtained by reconstructing the reference frame from its neighbors via deformable alignment, which is used to align the temporal depth features via a depth feature alignment (DFA) loss. Secondly, the 3D point clouds of each reference frame and its nearby frames are calculated and transformed into voxel space, where the point density in each voxel is calculated and aligned via a voxel density alignment (VDA) loss. In this way, we exploit the temporal coherence in both depth feature space and 3D voxel space for SS-MDE, shifting the “point-to-point” alignment paradigm to the “region-to-region” one. Compared with the photometric consistency loss as well as the rigid point cloud alignment loss, the proposed DFA and VDA losses are more robust owing to the strong representation power of deep features as well as the high tolerance of voxel density to the aforementioned challenges. Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques. Extensive ablation study and analysis validate the effectiveness of the proposed losses, especially in challenging scenes. The code and models are available at https://github.com/sunnyHelen/RCVC-depth.展开更多
Existing depth completion methods are often targeted at a specific sparse depth type and generalize poorly across task domains.We present a method to complete sparse/semi-dense,noisy,and potentially low-resolution dep...Existing depth completion methods are often targeted at a specific sparse depth type and generalize poorly across task domains.We present a method to complete sparse/semi-dense,noisy,and potentially low-resolution depth maps obtained by various range sensors,including those in modern mobile phones,or by multi-view reconstruction algorithms.Our method leverages a data-driven prior in the form of a single image depth prediction network trained on large-scale datasets,the output of which is used as an input to our model.We propose an effective training scheme where we simulate various sparsity patterns in typical task domains.In addition,we design two new benchmarks to evaluate the generalizability and robustness of depth completion methods.Our simple method shows superior cross-domain generalization ability against state-of-the-art depth completion methods,introducing a practical solution to highqualitydepthcapture onamobile device.展开更多
The Qinghai Gonghe-Guide Basin together with the alternatively distributed mountainous region shows characteristics that the conductive geothermal resource of the basin has high geothermal gradient, the granite occurs...The Qinghai Gonghe-Guide Basin together with the alternatively distributed mountainous region shows characteristics that the conductive geothermal resource of the basin has high geothermal gradient, the granite occurs in the bottom of borehole for geothermal exploration, and the convective hot springs in the basin-edge uplift fracture are in zonal distribution and with high-temperature geothermal water. There are still some divergences about the heat source mechanism of the basin. In this paper, queries to the view of mantle-derived heat source have been put forward, coming up with geochemical evidences to prove that the radiogenic heat of granite is the heat source within the mantle. Additionally, temperature curve is drawn based on the geothermal boring and geochemical geothermometer has been adopted for an estimation of the temperature and depth of the geothermal reservoir, it has been found that the surrounding mountains belong to the medium-temperature geothermal system while the area within the basin belongs to the high-temperature geothermal system with the temperature of borehole bottom reaching up to 175-180 ℃. In this paper, discussions on the problems existing in the calculation of geothermal gradient and the differences generated by the geothermal system have been carried out.展开更多
This paper aims to address the problem of supervised monocular depth estimation.We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation.Moreover...This paper aims to address the problem of supervised monocular depth estimation.We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation.Moreover,the Transformer and convolution are good at long-range and close-range depth estimation,respectively.Therefore,we propose to adopt a parallel encoder architecture consisting of a Transformer branch and a convolution branch.The former can model global context with the effective attention mechanism and the latter aims to preserve the local information as the Transformer lacks the spatial inductive bias in modeling such contents.However,independent branches lead to a shortage of connections between features.To bridge this gap,we design a hierarchical aggregation and heterogeneous interaction module to enhance the Transformer features and model the affinity between the heterogeneous features in a set-to-set translation manner.Due to the unbearable memory cost introduced by the global attention on high-resolution feature maps,we adopt the deformable scheme to reduce the complexity.Extensive experiments on the KITTI,NYU,and SUN RGB-D datasets demonstrate that our proposed model,termed DepthFormer,surpasses state-of-the-art monocular depth estimation methods with prominent margins.The effectiveness of each proposed module is elaborately evaluated through meticulous and intensive ablation studies.展开更多
Interpretation of gravity data plays an important role in the study of geologic structure and resource exploration in the deep part of the earth,like the lower crust,the upper mantle(Lüet al.,2013,2019).The gravi...Interpretation of gravity data plays an important role in the study of geologic structure and resource exploration in the deep part of the earth,like the lower crust,the upper mantle(Lüet al.,2013,2019).The gravity anomaly reflects the lateral resolution of the underground mass distribution.展开更多
Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve c...Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve conventional arthroscopic surgeries,as a full 3D semantic representation of the surgical site can directly improve surgeons’ability.It also brings the possibility of intraoperative image registration with preoperative clinical records for the development of semi-autonomous,and fully autonomous platforms.This study aimed to present a novel monocular depth prediction model to infer depth maps from a single-color arthroscopic video frame.Methods We applied a novel technique that provides the ability to combine both supervised and self-supervised loss terms and thus eliminate the drawback of each technique.It enabled the estimation of edge-preserving depth maps from a single untextured arthroscopic frame.The proposed image acquisition technique projected artificial textures on the surface to improve the quality of disparity maps from stereo images.Moreover,following the integration of the attention-ware multi-scale feature extraction technique along with scene global contextual constraints and multiscale depth fusion,the model could predict reliable and accurate tissue depth of the surgical sites that complies with scene geometry.Results A total of 4,128 stereo frames from a knee phantom were used to train a network,and during the pre-trained stage,the network learned disparity maps from the stereo images.The fine-tuned training phase uses 12,695 knee arthroscopic stereo frames from cadaver experiments along with their corresponding coarse disparity maps obtained from the stereo matching technique.In a supervised fashion,the network learns the left image to the disparity map transformation process,whereas the self-supervised loss term refines the coarse depth map by minimizing reprojection,gradients,and structural dissimilarity loss.Together,our method produces high-quality 3D maps with minimum re-projection loss that are 0.0004132(structural similarity index),0.00036120156(L1 error distance)and 6.591908×10^(−5)(L1 gradient error distance).Conclusion Machine learning techniques for monocular depth prediction is studied to infer accurate depth maps from a single-color arthroscopic video frame.Moreover,the study integrates segmentation model hence,3D segmented maps are inferred that provides extended perception ability and tissue awareness.展开更多
Feature initialization is an important issue in the monocular simultaneous locahzation ana mapping (SLAM) literature as the feature depth can not be obtained at one observation. In this paper, we present a new featu...Feature initialization is an important issue in the monocular simultaneous locahzation ana mapping (SLAM) literature as the feature depth can not be obtained at one observation. In this paper, we present a new feature initialization method named modified homogeneous parameterization (MHP), which allows undelayed initialization with scale invariant representation of point features located at various depths. The linearization error of the measurement equation is quantified using a depth estimation model and the feature initialization process is described. In order to verify the performance of the proposed method, the simulation is carried out. Results show that with the proposed method, the SLAM algorithm can achieve better consistency as compared with the existing inverse depth parameterization (IDP) method.展开更多
基金the Grant of Program for Scientific ResearchInnovation Team in Colleges and Universities of Anhui Province(2022AH010095)The Grant ofScientific Research and Talent Development Foundation of the Hefei University(No.21-22RC15)+2 种基金The Key Research Plan of Anhui Province(No.2022k07020011)The Grant of Anhui Provincial940 CMC,2024,vol.79,no.1Natural Science Foundation,No.2308085MF213The Open Fund of Information Materials andIntelligent Sensing Laboratory of Anhui Province IMIS202205,as well as the AI General ComputingPlatform of Hefei University.
文摘Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.
基金supported in part by a fund from Bentley Systems,Inc.
文摘Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.
基金supported in part by School Research Projects of Wuyi University (No.5041700175).
文摘Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.
文摘Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.
基金supported by the National Research Foundation of Korea Grant funded by the Korea Ministry of Science and Technology under Grant No. 2012-0009228
文摘In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.
文摘Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
基金supported by the National Natural Science Foundation of China(Grant Nos.60832003)the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200801)the Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design.
基金This work was supported by the national key research development plan(Project No.YS2018YFB1403703)research project of the communication university of china(Project No.CUC200D058).
文摘Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.
文摘For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.
基金Supported by the National Natural Science Foundation of China under Grants 61872241, 62077037 and 62077037Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102。
文摘Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods directly feed the original RGB image into the model to extract depth features without avoiding the interference of depth-irrelevant information on depth-estimation accuracy,which leads to inferior performance.Methods To remove the influence of depth-irrelevant information and improve the depth-prediction accuracy,we propose RADepthNet,a novel reflectance-guided network that fuses boundary features.Specifically,our method predicts depth maps using the following three steps:(1)Intrinsic Image Decomposition.We propose a reflectance extraction module consisting of an encoder-decoder structure to extract the depth-related reflectance.Through an ablation study,we demonstrate that the module can reduce the influence of illumination on depth estimation.(2)Boundary Detection.A boundary extraction module,consisting of an encoder,refinement block,and upsample block,was proposed to better predict the depth at object boundaries utilizing gradient constraints.(3)Depth Prediction Module.We use an encoder different from(2)to obtain depth features from the reflectance map and fuse boundary features to predict depth.In addition,we proposed FIFADataset,a depth-estimation dataset applied in soccer scenarios.Results Extensive experiments on a public dataset and our proposed FIFADataset show that our method achieves state-of-the-art performance.
文摘Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span>
基金supported by the National Research Foundation of Korea (NRF) (NRF-2018R1D1A3B07044041&NRF-2020R1A2C1101258)supported by the MSIT (Ministry of Science and ICT),Korea,under the ITRC (Information Technology Research Center)Support Program (IITP-2023-2020-0-01846)was conducted during the research year of Chungbuk National University in 2023.
文摘This article describes a novel approach for enhancing the three-dimensional(3D)point cloud reconstruction for light field microscopy(LFM)using U-net architecture-based fully convolutional neural network(CNN).Since the directional view of the LFM is limited,noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds.The existing methods suffer from these problems due to the self-occlusion of the model.This manuscript proposes a deep fusion learning(DL)method that combines a 3D CNN with a U-Net-based model as a feature extractor.The sub-aperture images obtained from the light field microscopy are aligned to form a light field data cube for preprocessing.A multi-stream 3D CNNs and U-net architecture are applied to obtain the depth feature fromthe directional sub-aperture LF data cube.For the enhancement of the depthmap,dual iteration-based weighted median filtering(WMF)is used to reduce surface noise and enhance the accuracy of the reconstruction.Generating a 3D point cloud involves combining two key elements:the enhanced depth map and the central view of the light field image.The proposed method is validated using synthesized Heidelberg Collaboratory for Image Processing(HCI)and real-world LFM datasets.The results are compared with different state-of-the-art methods.The structural similarity index(SSIM)gain for boxes,cotton,pillow,and pens are 0.9760,0.9806,0.9940,and 0.9907,respectively.Moreover,the discrete entropy(DE)value for LFM depth maps exhibited better performance than other existing methods.
文摘Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulnerable to illumination variance, occlusions, texture-less regions, as well as moving objects, making them not robust enough to deal with various scenes. To address this challenge, we study two kinds of robust cross-view consistency in this paper. Firstly, the spatial offset field between adjacent frames is obtained by reconstructing the reference frame from its neighbors via deformable alignment, which is used to align the temporal depth features via a depth feature alignment (DFA) loss. Secondly, the 3D point clouds of each reference frame and its nearby frames are calculated and transformed into voxel space, where the point density in each voxel is calculated and aligned via a voxel density alignment (VDA) loss. In this way, we exploit the temporal coherence in both depth feature space and 3D voxel space for SS-MDE, shifting the “point-to-point” alignment paradigm to the “region-to-region” one. Compared with the photometric consistency loss as well as the rigid point cloud alignment loss, the proposed DFA and VDA losses are more robust owing to the strong representation power of deep features as well as the high tolerance of voxel density to the aforementioned challenges. Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques. Extensive ablation study and analysis validate the effectiveness of the proposed losses, especially in challenging scenes. The code and models are available at https://github.com/sunnyHelen/RCVC-depth.
文摘Existing depth completion methods are often targeted at a specific sparse depth type and generalize poorly across task domains.We present a method to complete sparse/semi-dense,noisy,and potentially low-resolution depth maps obtained by various range sensors,including those in modern mobile phones,or by multi-view reconstruction algorithms.Our method leverages a data-driven prior in the form of a single image depth prediction network trained on large-scale datasets,the output of which is used as an input to our model.We propose an effective training scheme where we simulate various sparsity patterns in typical task domains.In addition,we design two new benchmarks to evaluate the generalizability and robustness of depth completion methods.Our simple method shows superior cross-domain generalization ability against state-of-the-art depth completion methods,introducing a practical solution to highqualitydepthcapture onamobile device.
文摘The Qinghai Gonghe-Guide Basin together with the alternatively distributed mountainous region shows characteristics that the conductive geothermal resource of the basin has high geothermal gradient, the granite occurs in the bottom of borehole for geothermal exploration, and the convective hot springs in the basin-edge uplift fracture are in zonal distribution and with high-temperature geothermal water. There are still some divergences about the heat source mechanism of the basin. In this paper, queries to the view of mantle-derived heat source have been put forward, coming up with geochemical evidences to prove that the radiogenic heat of granite is the heat source within the mantle. Additionally, temperature curve is drawn based on the geothermal boring and geochemical geothermometer has been adopted for an estimation of the temperature and depth of the geothermal reservoir, it has been found that the surrounding mountains belong to the medium-temperature geothermal system while the area within the basin belongs to the high-temperature geothermal system with the temperature of borehole bottom reaching up to 175-180 ℃. In this paper, discussions on the problems existing in the calculation of geothermal gradient and the differences generated by the geothermal system have been carried out.
文摘This paper aims to address the problem of supervised monocular depth estimation.We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation.Moreover,the Transformer and convolution are good at long-range and close-range depth estimation,respectively.Therefore,we propose to adopt a parallel encoder architecture consisting of a Transformer branch and a convolution branch.The former can model global context with the effective attention mechanism and the latter aims to preserve the local information as the Transformer lacks the spatial inductive bias in modeling such contents.However,independent branches lead to a shortage of connections between features.To bridge this gap,we design a hierarchical aggregation and heterogeneous interaction module to enhance the Transformer features and model the affinity between the heterogeneous features in a set-to-set translation manner.Due to the unbearable memory cost introduced by the global attention on high-resolution feature maps,we adopt the deformable scheme to reduce the complexity.Extensive experiments on the KITTI,NYU,and SUN RGB-D datasets demonstrate that our proposed model,termed DepthFormer,surpasses state-of-the-art monocular depth estimation methods with prominent margins.The effectiveness of each proposed module is elaborately evaluated through meticulous and intensive ablation studies.
基金the National Natural Science Foundation(Grant nos.41904122,42004068)China Geological Survey’s project(Grant nos.DD20190012,DD20190435,and DD 20190129)+2 种基金the Special Project for Basic Scientific Research Service(Grant No.JKY202007)the Macao Young Scholars Program(Grant No.AM2020001)the Science and Technology Development Fund,Macao SAR
文摘Interpretation of gravity data plays an important role in the study of geologic structure and resource exploration in the deep part of the earth,like the lower crust,the upper mantle(Lüet al.,2013,2019).The gravity anomaly reflects the lateral resolution of the underground mass distribution.
基金supported by the Australian Indian Strategic Research Fund(Project AISRF53820).
文摘Background Lack of depth perception from medical imaging systems is one of the long-standing technological limitations of minimally invasive surgeries.The ability to visualize anatomical structures in 3D can improve conventional arthroscopic surgeries,as a full 3D semantic representation of the surgical site can directly improve surgeons’ability.It also brings the possibility of intraoperative image registration with preoperative clinical records for the development of semi-autonomous,and fully autonomous platforms.This study aimed to present a novel monocular depth prediction model to infer depth maps from a single-color arthroscopic video frame.Methods We applied a novel technique that provides the ability to combine both supervised and self-supervised loss terms and thus eliminate the drawback of each technique.It enabled the estimation of edge-preserving depth maps from a single untextured arthroscopic frame.The proposed image acquisition technique projected artificial textures on the surface to improve the quality of disparity maps from stereo images.Moreover,following the integration of the attention-ware multi-scale feature extraction technique along with scene global contextual constraints and multiscale depth fusion,the model could predict reliable and accurate tissue depth of the surgical sites that complies with scene geometry.Results A total of 4,128 stereo frames from a knee phantom were used to train a network,and during the pre-trained stage,the network learned disparity maps from the stereo images.The fine-tuned training phase uses 12,695 knee arthroscopic stereo frames from cadaver experiments along with their corresponding coarse disparity maps obtained from the stereo matching technique.In a supervised fashion,the network learns the left image to the disparity map transformation process,whereas the self-supervised loss term refines the coarse depth map by minimizing reprojection,gradients,and structural dissimilarity loss.Together,our method produces high-quality 3D maps with minimum re-projection loss that are 0.0004132(structural similarity index),0.00036120156(L1 error distance)and 6.591908×10^(−5)(L1 gradient error distance).Conclusion Machine learning techniques for monocular depth prediction is studied to infer accurate depth maps from a single-color arthroscopic video frame.Moreover,the study integrates segmentation model hence,3D segmented maps are inferred that provides extended perception ability and tissue awareness.
文摘Feature initialization is an important issue in the monocular simultaneous locahzation ana mapping (SLAM) literature as the feature depth can not be obtained at one observation. In this paper, we present a new feature initialization method named modified homogeneous parameterization (MHP), which allows undelayed initialization with scale invariant representation of point features located at various depths. The linearization error of the measurement equation is quantified using a depth estimation model and the feature initialization process is described. In order to verify the performance of the proposed method, the simulation is carried out. Results show that with the proposed method, the SLAM algorithm can achieve better consistency as compared with the existing inverse depth parameterization (IDP) method.