Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious pro...Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.展开更多
An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, wh...An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, which become increasingly tighter for the matching criteria, the method tries to successively terminate unnecessary computations of the matching criteria between the reference block in one image and the ineligible candidate blocks in another image.It also eliminates the ineligible blocks as early as possible, while ensuring the optimal disparity of each pixel.Also, the proposed method can further speed up the elimination of ineligible candidate blocks by efficiently using the continuous constraint of disparity to predict the initial disparity of each pixel.The performance of the new algorithm is evaluated by carrying out a theoretical analysis, and by comparing its performance with the disparity estimation method based on the standard block matching.Simulated results demonstrate that the proposed algorithm achieves a computational cost reduction of over 50.5% in comparision with the standard block matching method.展开更多
Existing stereo matching methods cannot guarantee both the computational accuracy and efficiency for ihe disparity estimation of large-scale or multi-view images.Hybrid tree method can obtain a disparity estimation fa...Existing stereo matching methods cannot guarantee both the computational accuracy and efficiency for ihe disparity estimation of large-scale or multi-view images.Hybrid tree method can obtain a disparity estimation fast with relatively low accuracy,while PatchMatch can give high-precision disparity value with relatively high computational cost.In this work,we propose the Hybrid Tree Guided PatchMatch which can calculate the disparity fast and accurate.Firstly,an initial disparity map is estimated by employing hybrid tree cost aggregation,which is used to constrain the label searching range of the PatchMatch.Furthermore,a reliable normal searching range for each current normal vector defined on the initial disparity map is calculated to refine the PatchMatch.Finally,an effective quantizing acceleration strategy is designed to decrease the matching computational cost of continuous disparity.Experimental results demonstrate that the disparity estimation based on our algorithm is better in binocular image benchmarks such as Middlebury and KITTI.We also provide the disparity estimation results for multi-view stereo in real scenes.展开更多
Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the dr...Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.展开更多
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ...A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.展开更多
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun...In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.展开更多
Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore...Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.展开更多
Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still ...Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design.展开更多
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de...Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.展开更多
Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered ...Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span>展开更多
Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupe...Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.展开更多
For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the ...For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.展开更多
Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods dire...Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods directly feed the original RGB image into the model to extract depth features without avoiding the interference of depth-irrelevant information on depth-estimation accuracy,which leads to inferior performance.Methods To remove the influence of depth-irrelevant information and improve the depth-prediction accuracy,we propose RADepthNet,a novel reflectance-guided network that fuses boundary features.Specifically,our method predicts depth maps using the following three steps:(1)Intrinsic Image Decomposition.We propose a reflectance extraction module consisting of an encoder-decoder structure to extract the depth-related reflectance.Through an ablation study,we demonstrate that the module can reduce the influence of illumination on depth estimation.(2)Boundary Detection.A boundary extraction module,consisting of an encoder,refinement block,and upsample block,was proposed to better predict the depth at object boundaries utilizing gradient constraints.(3)Depth Prediction Module.We use an encoder different from(2)to obtain depth features from the reflectance map and fuse boundary features to predict depth.In addition,we proposed FIFADataset,a depth-estimation dataset applied in soccer scenarios.Results Extensive experiments on a public dataset and our proposed FIFADataset show that our method achieves state-of-the-art performance.展开更多
Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulner...Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulnerable to illumination variance, occlusions, texture-less regions, as well as moving objects, making them not robust enough to deal with various scenes. To address this challenge, we study two kinds of robust cross-view consistency in this paper. Firstly, the spatial offset field between adjacent frames is obtained by reconstructing the reference frame from its neighbors via deformable alignment, which is used to align the temporal depth features via a depth feature alignment (DFA) loss. Secondly, the 3D point clouds of each reference frame and its nearby frames are calculated and transformed into voxel space, where the point density in each voxel is calculated and aligned via a voxel density alignment (VDA) loss. In this way, we exploit the temporal coherence in both depth feature space and 3D voxel space for SS-MDE, shifting the “point-to-point” alignment paradigm to the “region-to-region” one. Compared with the photometric consistency loss as well as the rigid point cloud alignment loss, the proposed DFA and VDA losses are more robust owing to the strong representation power of deep features as well as the high tolerance of voxel density to the aforementioned challenges. Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques. Extensive ablation study and analysis validate the effectiveness of the proposed losses, especially in challenging scenes. The code and models are available at https://github.com/sunnyHelen/RCVC-depth.展开更多
Light Field(LF)depth estimation is an important research direction in the area of computer vision and computational photography,which aims to infer the depth information of different objects in threedimensional scenes...Light Field(LF)depth estimation is an important research direction in the area of computer vision and computational photography,which aims to infer the depth information of different objects in threedimensional scenes by capturing LF data.Given this new era of significance,this article introduces a survey of the key concepts,methods,novel applications,and future trends in this area.We summarize the LF depth estimation methods,which are usually based on the interaction of radiance from rays in all directions of the LF data,such as epipolar-plane,multi-view geometry,focal stack,and deep learning.We analyze the many challenges facing each of these approaches,including complex algorithms,large amounts of computation,and speed requirements.In addition,this survey summarizes most of the currently available methods,conducts some comparative experiments,discusses the results,and investigates the novel directions in LF depth estimation.展开更多
The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an el...The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an elastic state and the deep,relatively soft rock may be in a plastic state. However,in the tectonic stress field,the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic,plastic and critical states. The critical state is a special stress state,which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases stud-ies show that the estimation method is feasible.展开更多
Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the rela...Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the relations between disparity, depth and object relation between block size and disparity estimation, and the influence of error criteria on disparity estimation.展开更多
基金supported in part by School Research Projects of Wuyi University (No.5041700175).
文摘Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.
基金supported by the Opening Project of State Key Laboratory for Manufacturing Systems EngineeringFoundation for Youth Teacher of School of Mechanical Engineering, Xi’an Jiaotong University Brain Korea 21(BK21) Program of Ministry of Education and Human Resources Development
文摘An improved block matching approach to fast disparity estimation in machine vision applications is proposed, where the matching criterion is the sum of the absolute difference(SAD).By evaluating the lower bounds, which become increasingly tighter for the matching criteria, the method tries to successively terminate unnecessary computations of the matching criteria between the reference block in one image and the ineligible candidate blocks in another image.It also eliminates the ineligible blocks as early as possible, while ensuring the optimal disparity of each pixel.Also, the proposed method can further speed up the elimination of ineligible candidate blocks by efficiently using the continuous constraint of disparity to predict the initial disparity of each pixel.The performance of the new algorithm is evaluated by carrying out a theoretical analysis, and by comparing its performance with the disparity estimation method based on the standard block matching.Simulated results demonstrate that the proposed algorithm achieves a computational cost reduction of over 50.5% in comparision with the standard block matching method.
文摘Existing stereo matching methods cannot guarantee both the computational accuracy and efficiency for ihe disparity estimation of large-scale or multi-view images.Hybrid tree method can obtain a disparity estimation fast with relatively low accuracy,while PatchMatch can give high-precision disparity value with relatively high computational cost.In this work,we propose the Hybrid Tree Guided PatchMatch which can calculate the disparity fast and accurate.Firstly,an initial disparity map is estimated by employing hybrid tree cost aggregation,which is used to constrain the label searching range of the PatchMatch.Furthermore,a reliable normal searching range for each current normal vector defined on the initial disparity map is calculated to refine the PatchMatch.Finally,an effective quantizing acceleration strategy is designed to decrease the matching computational cost of continuous disparity.Experimental results demonstrate that the disparity estimation based on our algorithm is better in binocular image benchmarks such as Middlebury and KITTI.We also provide the disparity estimation results for multi-view stereo in real scenes.
文摘Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.
基金supported by the National Research Foundation of Korea Grant funded by the Korea Ministry of Science and Technology under Grant No. 2012-0009228
文摘In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.
基金the Grant of Program for Scientific ResearchInnovation Team in Colleges and Universities of Anhui Province(2022AH010095)The Grant ofScientific Research and Talent Development Foundation of the Hefei University(No.21-22RC15)+2 种基金The Key Research Plan of Anhui Province(No.2022k07020011)The Grant of Anhui Provincial940 CMC,2024,vol.79,no.1Natural Science Foundation,No.2308085MF213The Open Fund of Information Materials andIntelligent Sensing Laboratory of Anhui Province IMIS202205,as well as the AI General ComputingPlatform of Hefei University.
文摘Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.
基金supported by the National Natural Science Foundation of China(Grant Nos.60832003)the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200801)the Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design.
文摘Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
文摘Most approaches to estimate a scene’s 3D depth from a single image often model the point spread function (PSF) as a 2D Gaussian function. However, those method<span>s</span><span> are suffered from some noises, and difficult to get a high quality of depth recovery. We presented a simple yet effective approach to estimate exactly the amount of spatially varying defocus blur at edges, based on </span><span>a</span><span> Cauchy distribution model for the PSF. The raw image was re-blurred twice using two known Cauchy distribution kernels, and the defocus blur amount at edges could be derived from the gradient ratio between the two re-blurred images. By propagating the blur amount at edge locations to the entire image using the matting interpolation, a full depth map was then recovered. Experimental results on several real images demonstrated both feasibility and effectiveness of our method, being a non-Gaussian model for DSF, in providing a better estimation of the defocus map from a single un-calibrated defocused image. These results also showed that our method </span><span>was</span><span> robust to image noises, inaccurate edge location and interferences of neighboring edges. It could generate more accurate scene depth maps than the most of existing methods using a Gaussian based DSF model.</span>
基金This work was supported by the national key research development plan(Project No.YS2018YFB1403703)research project of the communication university of china(Project No.CUC200D058).
文摘Learning-based multi-task models have been widely used in various scene understanding tasks,and complement each other,i.e.,they allow us to consider prior semantic information to better infer depth.We boost the unsupervised monocular depth estimation using semantic segmentation as an auxiliary task.To address the lack of cross-domain datasets and catastrophic forgetting problems encountered in multi-task training,we utilize existing methodology to obtain redundant segmentation maps to build our cross-domain dataset,which not only provides a new way to conduct multi-task training,but also helps us to evaluate results compared with those of other algorithms.In addition,in order to comprehensively use the extracted features of the two tasks in the early perception stage,we use a strategy of sharing weights in the network to fuse cross-domain features,and introduce a novel multi-task loss function to further smooth the depth values.Extensive experiments on KITTI and Cityscapes datasets show that our method has achieved state-of-the-art performance in the depth estimation task,as well improved semantic segmentation.
文摘For traffic object detection in foggy environment based on convolutional neural network(CNN),data sets in fog-free environment are generally used to train the network directly.As a result,the network cannot learn the object characteristics in the foggy environment in the training set,and the detection effect is not good.To improve the traffic object detection in foggy environment,we propose a method of generating foggy images on fog-free images from the perspective of data set construction.First,taking the KITTI objection detection data set as an original fog-free image,we generate the depth image of the original image by using improved Monodepth unsupervised depth estimation method.Then,a geometric prior depth template is constructed to fuse the image entropy taken as weight with the depth image.After that,a foggy image is acquired from the depth image based on the atmospheric scattering model.Finally,we take two typical object-detection frameworks,that is,the two-stage object-detection Fster region-based convolutional neural network(Faster-RCNN)and the one-stage object-detection network YOLOv4,to train the original data set,the foggy data set and the mixed data set,respectively.According to the test results on RESIDE-RTTS data set in the outdoor natural foggy environment,the model under the training on the mixed data set shows the best effect.The mean average precision(mAP)values are increased by 5.6%and by 5.0%under the YOLOv4 model and the Faster-RCNN network,respectively.It is proved that the proposed method can effectively improve object identification ability foggy environment.
基金Supported by the National Natural Science Foundation of China under Grants 61872241, 62077037 and 62077037Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102。
文摘Background Monocular depth estimation aims to predict a dense depth map from a single RGB image,and has important applications in 3D reconstruction,automatic driving,and augmented reality.However,existing methods directly feed the original RGB image into the model to extract depth features without avoiding the interference of depth-irrelevant information on depth-estimation accuracy,which leads to inferior performance.Methods To remove the influence of depth-irrelevant information and improve the depth-prediction accuracy,we propose RADepthNet,a novel reflectance-guided network that fuses boundary features.Specifically,our method predicts depth maps using the following three steps:(1)Intrinsic Image Decomposition.We propose a reflectance extraction module consisting of an encoder-decoder structure to extract the depth-related reflectance.Through an ablation study,we demonstrate that the module can reduce the influence of illumination on depth estimation.(2)Boundary Detection.A boundary extraction module,consisting of an encoder,refinement block,and upsample block,was proposed to better predict the depth at object boundaries utilizing gradient constraints.(3)Depth Prediction Module.We use an encoder different from(2)to obtain depth features from the reflectance map and fuse boundary features to predict depth.In addition,we proposed FIFADataset,a depth-estimation dataset applied in soccer scenarios.Results Extensive experiments on a public dataset and our proposed FIFADataset show that our method achieves state-of-the-art performance.
文摘Remarkable progress has been made in self-supervised monocular depth estimation (SS-MDE) by exploring cross-view consistency, e.g., photometric consistency and 3D point cloud consistency. However, they are very vulnerable to illumination variance, occlusions, texture-less regions, as well as moving objects, making them not robust enough to deal with various scenes. To address this challenge, we study two kinds of robust cross-view consistency in this paper. Firstly, the spatial offset field between adjacent frames is obtained by reconstructing the reference frame from its neighbors via deformable alignment, which is used to align the temporal depth features via a depth feature alignment (DFA) loss. Secondly, the 3D point clouds of each reference frame and its nearby frames are calculated and transformed into voxel space, where the point density in each voxel is calculated and aligned via a voxel density alignment (VDA) loss. In this way, we exploit the temporal coherence in both depth feature space and 3D voxel space for SS-MDE, shifting the “point-to-point” alignment paradigm to the “region-to-region” one. Compared with the photometric consistency loss as well as the rigid point cloud alignment loss, the proposed DFA and VDA losses are more robust owing to the strong representation power of deep features as well as the high tolerance of voxel density to the aforementioned challenges. Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques. Extensive ablation study and analysis validate the effectiveness of the proposed losses, especially in challenging scenes. The code and models are available at https://github.com/sunnyHelen/RCVC-depth.
基金supported by the National Key R&D Program of China(2022YFC3803600)the National Natural Science Foundation of China(62372023)the Open Fund of the State Key Laboratory of Software Development Environment,China(SKLSDE-2023ZX-11).
文摘Light Field(LF)depth estimation is an important research direction in the area of computer vision and computational photography,which aims to infer the depth information of different objects in threedimensional scenes by capturing LF data.Given this new era of significance,this article introduces a survey of the key concepts,methods,novel applications,and future trends in this area.We summarize the LF depth estimation methods,which are usually based on the interaction of radiance from rays in all directions of the LF data,such as epipolar-plane,multi-view geometry,focal stack,and deep learning.We analyze the many challenges facing each of these approaches,including complex algorithms,large amounts of computation,and speed requirements.In addition,this survey summarizes most of the currently available methods,conducts some comparative experiments,discusses the results,and investigates the novel directions in LF depth estimation.
基金Projects 40272114 and 40572160 supported by the National Natural Science Foundation of China
文摘The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an elastic state and the deep,relatively soft rock may be in a plastic state. However,in the tectonic stress field,the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic,plastic and critical states. The critical state is a special stress state,which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases stud-ies show that the estimation method is feasible.
基金the National Natural Science Foundation of China(69972027)
文摘Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the relations between disparity, depth and object relation between block size and disparity estimation, and the influence of error criteria on disparity estimation.