期刊文献+
共找到940篇文章
< 1 2 47 >
每页显示 20 50 100
基于自动终止准则改进的kd-tree粒子近邻搜索研究
1
作者 张挺 王宗锴 +1 位作者 林震寰 郑相涵 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期217-229,共13页
对于大规模运动模拟问题而言,近邻点的搜索效率将对整体的运算效率产生显著影响。本文基于关联性分析建立kd-tree的最大深度dmax与粒子总数N的自适应关系式,提出了kd-tree自动终止准则,即ATC-kd-tree,同时还考虑了叶子节点大小阈值n_(0... 对于大规模运动模拟问题而言,近邻点的搜索效率将对整体的运算效率产生显著影响。本文基于关联性分析建立kd-tree的最大深度dmax与粒子总数N的自适应关系式,提出了kd-tree自动终止准则,即ATC-kd-tree,同时还考虑了叶子节点大小阈值n_(0)对近邻搜索效率的影响。试验表明,ATC-kd-tree具有更高的近邻搜索效率,相较于不使用自动终止准则的kd-tree搜索效率最高提升46%,且适用性更强,可求解不同N值的近邻搜索问题,解决了粒子总数N发生改变时需要再次率定最大深度dmax的问题。同时,本文还提出了网格搜索法组合坐标下降法的两步参数优化算法GSCD法。通过2维阿米巴虫形状的参数优化试验发现,GSCD法可更为快速地率定ATC-kd-tree的可变参数,其优化效率比网格搜索法最高提升了205%,相较于改进网格搜索法最高提升了90%。研究结果表明,ATC-kd-tree和GSCD法不仅提高了近邻搜索的效率,也为复杂运动中近邻粒子搜索问题提供了一种更为高效的解决方案,能够显著降低计算资源的消耗,进一步提升模拟的精度和效率。 展开更多
关键词 KD-tree 粒子近邻搜索 自适应 网格搜索法 坐标下降法
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
2
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random trees*(QRRT*)
下载PDF
Blocking optimized SIMD tree search on modern processors 被引量:2
3
作者 张倬 陆宇凡 +2 位作者 沈文枫 徐炜民 郑衍衡 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期437-444,共8页
Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting... Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm. 展开更多
关键词 single instruction multiple date (SIMD) tree search binary search streaming SIMD extensions (SSE) Cell broadband engine (BE)
下载PDF
Research on the adaptive hybrid search tree anti-collision algorithm in RFID system 被引量:3
4
作者 靳晓芳 Liu Mengxuan +2 位作者 Shao Min Jin Libiao Huang Xianglin 《High Technology Letters》 EI CAS 2016年第1期107-112,共6页
Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in thr... Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in throughput are very limited.In order to solve these problems,this paper presents a novel tag anti-collision scheme,namely adaptive hybrid search tree(AHST),by combining two algorithms of the adaptive binary-tree disassembly(ABD) and the combination query tree(CQT),in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations,the proposed algorithm can colligate the advantages of above algorithms,improve the system throughput and reduce the searching timeslots dramatically. 展开更多
关键词 ANTI-COLLISION adaptive binary-tree disassembly( ABD) hybrid search tree DISCRIMINATION
下载PDF
An efficient distributed algorithm for game tree search
5
作者 SUN WEI and MA SHAOHAN(Dept. of computer science, shandong university,Jinan 250100, P.R.China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期470-472,共3页
This paper presents a distributed game tree search algorithm called DDS. Based on communication overhead, st,orage requirement, speed up, and oiller factors, the performance of algorithm DDS* is analysed, and the numb... This paper presents a distributed game tree search algorithm called DDS. Based on communication overhead, st,orage requirement, speed up, and oiller factors, the performance of algorithm DDS* is analysed, and the number of nodes searched with SSS as well as a-b algorithm. The simulation test shows that. DDS* is an efficient and practical search algorithm. 展开更多
关键词 Distributed.search game tree AND/OR tree branch and bound.
下载PDF
Prediction Distortion in Monte Carlo Tree Search and an Improved Algorithm
6
作者 William Li 《Journal of Intelligent Learning Systems and Applications》 2018年第2期46-79,共34页
Teaching computer programs to play games through machine learning has been an important way to achieve better artificial intelligence (AI) in a variety of real-world applications. Monte Carlo Tree Search (MCTS) is one... Teaching computer programs to play games through machine learning has been an important way to achieve better artificial intelligence (AI) in a variety of real-world applications. Monte Carlo Tree Search (MCTS) is one of the key AI techniques developed recently that enabled AlphaGo to defeat a legendary professional Go player. What makes MCTS particularly attractive is that it only understands the basic rules of the game and does not rely on expert-level knowledge. Researchers thus expect that MCTS can be applied to other complex AI problems where domain-specific expert-level knowledge is not yet available. So far there are very few analytic studies in the literature. In this paper, our goal is to develop analytic studies of MCTS to build a more fundamental understanding of the algorithms and their applicability in complex AI problems. We start with a simple version of MCTS, called random playout search (RPS), to play Tic-Tac-Toe, and find that RPS may fail to discover the correct moves even in a very simple game position of Tic-Tac-Toe. Both the probability analysis and simulation have confirmed our discovery. We continue our studies with the full version of MCTS to play Gomoku and find that while MCTS has shown great success in playing more sophisticated games like Go, it is not effective to address the problem of sudden death/win. The main reason that MCTS often fails to detect sudden death/win lies in the random playout search nature of MCTS, which leads to prediction distortion. Therefore, although MCTS in theory converges to the optimal minimax search, with real world computational resource constraints, MCTS has to rely on RPS as an important step in its search process, therefore suffering from the same fundamental prediction distortion problem as RPS does. By examining the detailed statistics of the scores in MCTS, we investigate a variety of scenarios where MCTS fails to detect sudden death/win. Finally, we propose an improved MCTS algorithm by incorporating minimax search to overcome prediction distortion. Our simulation has confirmed the effectiveness of the proposed algorithm. We provide an estimate of the additional computational costs of this new algorithm to detect sudden death/win and discuss heuristic strategies to further reduce the search complexity. 展开更多
关键词 MONTE Carlo tree search MINIMAX search BOARD GAMES Artificial
下载PDF
Parametrically Optimal, Robust and Tree-Search Detection of Sparse Signals
7
作者 A. T. Burrell P. Papantoni-Kazakos 《Journal of Signal and Information Processing》 2013年第3期336-342,共7页
We consider sparse signals embedded in additive white noise. We study parametrically optimal as well as tree-search sub-optimal signal detection policies. As a special case, we consider a constant signal and Gaussian ... We consider sparse signals embedded in additive white noise. We study parametrically optimal as well as tree-search sub-optimal signal detection policies. As a special case, we consider a constant signal and Gaussian noise, with and without data outliers present. In the presence of outliers, we study outlier resistant robust detection techniques. We compare the studied policies in terms of error performance, complexity and resistance to outliers. 展开更多
关键词 SPARSE Signals DETECTION Robustness OUTLIER Resistance tree search
下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
8
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
下载PDF
Heru Search Method—Unique in the World that Uses Unprecedented Mathematical Formulas and Replaces the Binary Tree Breaking Various Paradigms Like 0(log<i>n</i>)
9
作者 Carlos Roberto Franç a 《American Journal of Computational Mathematics》 2017年第1期29-39,共11页
This paper deals with the efficiency of the search, with a method of organization and storage of the information that allows better results than the research trees or binary trees. No one ever dared to present better ... This paper deals with the efficiency of the search, with a method of organization and storage of the information that allows better results than the research trees or binary trees. No one ever dared to present better results than 0(log n) complexity, and when they wish to improve, they use balanced trees, but they continue to use principles that do not impact the pre-semantic information treatment. The Heru search method has as main characteristic the total or partial substitution of the use of the binary trees, enabling the elimination of the approximate results and informing the user the desired information instead of occurrences by sampling outside the desired information. The breakdown of the 0(log n) paradigm and the refinement of the searches are achieved with the use of a set of unpublished mathematical formulas and concepts called Infinite Series with Multiple Ratios. 展开更多
关键词 search Method B-tree Innovations in Database Infinite Series
下载PDF
Performance Characterization of Parallel Game-tree Search Application Crafty
10
作者 谭膺 罗克露 +1 位作者 陈玉荣 张益民 《Journal of Electronic Science and Technology of China》 2006年第2期155-160,共6页
Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art pr... Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art program, on two Intel Xeon shared-memory multiprocessor systems. Our analysis shows that Crafty is latency-sensitive and the hash-table and dynamic tree splitting used in Crafty cause large scalability penalties. They consume 35%-50% of the running time on the 4-way system. Furthermore, Crafty is not bandwidth-limited. 展开更多
关键词 performance characterization workload analysis parallel game-tree search computer chess crafty
下载PDF
LLRB算法的函数式建模及其机械化验证
11
作者 左正康 黄志鹏 +4 位作者 黄箐 孙欢 曾志城 胡颖 王昌晶 《软件学报》 EI CSCD 北大核心 2024年第11期5016-5039,共24页
基于机器定理证明的形式化验证技术不受状态空间限制,是保证软件正确性、避免因潜在软件缺陷带来严重损失的重要方法.LLRB(left-leaning red-black trees)是一种二叉搜索树变体,其结构比传统的红黑树添加了额外的左倾约束条件,在验证时... 基于机器定理证明的形式化验证技术不受状态空间限制,是保证软件正确性、避免因潜在软件缺陷带来严重损失的重要方法.LLRB(left-leaning red-black trees)是一种二叉搜索树变体,其结构比传统的红黑树添加了额外的左倾约束条件,在验证时无法使用常规的证明策略,需要更多的人工干预和努力,其正确性验证是一个公认的难题.为此,基于二叉搜索树类算法Isabelle验证框架,对其附加性质部分进行细化,并给出具体化的验证方案.在Isabelle中对LLRB插入和删除操作进行函数式建模,对其不变量进行模块化处理,并验证函数的正确性.这是首次在Isabelle中对函数式LLRB插入和删除算法进行机械化验证,相较于目前LLRB算法的Dafny验证,定理数由158减少至84,且无需构造中间断言,减轻了验证的负担;同时,为复杂树结构算法的函数式建模及验证提供了一定的参考价值. 展开更多
关键词 LLRB 函数式建模 机械化验证 Isabelle定理证明器 二叉搜索树
下载PDF
融合均值榜样的反向互学习水母搜索算法
12
作者 段艳明 肖辉辉 谭黔林 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期111-119,I0015,I0016,共11页
为解决水母搜索算法(jellyfish search algorithm,JS)的洋流运动缺乏多样性、群内运动缺乏引导性、种群间信息无交流,造成搜索速度慢、稳定性差及易早熟的问题,构建了一种融合均值榜样的反向互学习水母搜索算法(oppositional-mutual lea... 为解决水母搜索算法(jellyfish search algorithm,JS)的洋流运动缺乏多样性、群内运动缺乏引导性、种群间信息无交流,造成搜索速度慢、稳定性差及易早熟的问题,构建了一种融合均值榜样的反向互学习水母搜索算法(oppositional-mutual learning jellyfish search algorithm based on mean-value example,OMLJS).首先在水母跟随洋流运动(全局搜索)部分,利用前两代水母的平均位置代替只考虑上一代水母的平均位置来引导水母个体的位置更新,提高算法的全局搜索能力;其次在水母的群内主动运动(局部搜索)部分,利用最优个体代替随机个体来引导水母进行更有效的搜索,加快算法的收敛速度;然后在水母进入下一次迭代前增加对水母种群进行动态反向互学习步骤,增加种群多样性及增强种群间的信息交流,达到互补另外两个策略,提高算法的整体优化性能.选用12个经典的基准测试优化函数,将OMLJS与5个对比算法从解的平均值、最优值及方差进行对比分析,并用于求解最小生成树问题,OMLJS能够更快地找到最小生成树.实验结果表明,OMLJS的收敛速度、求解精度明显提高. 展开更多
关键词 水母搜索算法 均值榜样学习 反向互学习 时间控制机制 最小生成树问题
下载PDF
考虑综合性能最优的非短视快速天基雷达多目标跟踪资源调度算法
13
作者 王增福 杨广宇 金术玲 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第1期253-269,共17页
合理有效的资源调度是天基雷达效能得以充分发挥的关键。针对天基雷达多目标跟踪资源调度问题,建立了综合考虑目标威胁度、跟踪精度与低截获概率(LPI)的代价函数;考虑目标的不确定、天基平台约束以及长远期期望代价,建立了多约束下的基... 合理有效的资源调度是天基雷达效能得以充分发挥的关键。针对天基雷达多目标跟踪资源调度问题,建立了综合考虑目标威胁度、跟踪精度与低截获概率(LPI)的代价函数;考虑目标的不确定、天基平台约束以及长远期期望代价,建立了多约束下的基于部分可观测的马尔可夫决策过程(POMDP)的资源调度模型;采用拉格朗日松弛法将多约束下的多目标跟踪资源调度问题转换分解为多个无约束的子问题;针对连续状态空间、连续动作空间及连续观测空间引起的维数灾难问题,采用基于蒙特卡罗树搜索(MCTS)的在线POMDP算法—POMCPOW算法进行求解,最终提出了一种综合多指标性能的非短视快速天基雷达多目标跟踪资源调度算法。仿真表明,与已有调度算法相比,所提算法资源分配更合理,系统性能更优。 展开更多
关键词 天基雷达 资源调度 多目标跟踪 部分可观测的马尔可夫决策过程 蒙特卡罗树搜索(MCTS)
下载PDF
面向人员岸滩行进的三维路径规划算法研究
14
作者 董箭 王天岳 王栋 《海洋测绘》 CSCD 北大核心 2024年第2期66-71,共6页
针对当前无法为人员岸滩行进提供科学合理的路径规划这一问题,论文基于蚁群算法提出了面向岸滩行进的最优路径规划算法。首先对基本的蚁群算法进行了改良,包括路径搜索方式、信息素更新策略和启发函数的合理设计等,改善了算法的收敛效率... 针对当前无法为人员岸滩行进提供科学合理的路径规划这一问题,论文基于蚁群算法提出了面向岸滩行进的最优路径规划算法。首先对基本的蚁群算法进行了改良,包括路径搜索方式、信息素更新策略和启发函数的合理设计等,改善了算法的收敛效率;然后定量结合多类岸滩场路径规划影响因子,构建了满足岸滩行进的代价函数;最终实现了面向岸滩行进的算法构建。该算法可为实现复杂地形条件下岸滩行进的最优路径解算和基于蚁群算法的相关三维路径规划分析研究提供参考借鉴。 展开更多
关键词 栅格模型 岸滩行进 三维路径规划 蚁群算法 十六叉树搜索
下载PDF
基于KNN-RRT 的机械臂运动路径规划算法
15
作者 张延军 张朋琳 +3 位作者 马创创 郭栋梁 韩雨 陈博 《组合机床与自动化加工技术》 北大核心 2024年第11期28-33,共6页
针对机械臂路径规划过程中节点生成容易陷入局部最小值、算法收敛速度慢等问题,以目标引力函数渐进最优快速扩展随机树(P-RRT)为基础,提出一种基于KNN快速查找的自适应步长的改进RRT算法(KNN-RRT)。首先,在目标引力的基础上引入AdaGrad... 针对机械臂路径规划过程中节点生成容易陷入局部最小值、算法收敛速度慢等问题,以目标引力函数渐进最优快速扩展随机树(P-RRT)为基础,提出一种基于KNN快速查找的自适应步长的改进RRT算法(KNN-RRT)。首先,在目标引力的基础上引入AdaGrad方法来调整自适应步长系数,降低随机点采样陷入局部最小值的问题;其次,利用KDTree来存储节点并利k邻近快速搜索查找相邻节点,提高算法的效率,并结合三次B样条曲线优化搜索路径的质量;最后,基于KNN-RRT算法在不同障碍物环境下进行实验,实验结果表明该算法在路径搜索时间、路径质量等方面有显著提升,提高算法的稳定性。 展开更多
关键词 机械臂运动规划 渐进最优快速搜索随机树 避障规划 路径优化
下载PDF
树状结构在数据流求均值中的应用
16
作者 刘薇 陈文 《电脑与电信》 2024年第3期81-83,88,共4页
数据采集过程中,随着数据的增加,数据的平均值持续发生变化。为了研究平均值的变化过程,分析平均值序列的计算方法是有必要的。传统的方法是使用线性顺序存储方式计算均值序列,总的时间复杂度高达O(n2)。提出利用树状结构存储方法求取... 数据采集过程中,随着数据的增加,数据的平均值持续发生变化。为了研究平均值的变化过程,分析平均值序列的计算方法是有必要的。传统的方法是使用线性顺序存储方式计算均值序列,总的时间复杂度高达O(n2)。提出利用树状结构存储方法求取均值序列,并介绍其实现方法,该方法时间复杂度大大降低,仅为O(n*lnn)。 展开更多
关键词 算法 数据流 搜索树 平均值
下载PDF
基于聚类和GBDT的镀锌钢卷力学性能预测
17
作者 王伟 赵飞 +2 位作者 匡祯辉 白振华 刘勇 《重型机械》 2024年第2期54-58,共5页
热镀锌钢卷力学性能影响因素之间关系复杂,限制了模型精度的提升。采用k-means算法利用化学成分属性对镀锌钢卷数据集进行聚类,将数据聚成三种模式簇实现样本的优选。利用梯度提升树算法,开展各模式数据集与不划分模式的全数据集下的力... 热镀锌钢卷力学性能影响因素之间关系复杂,限制了模型精度的提升。采用k-means算法利用化学成分属性对镀锌钢卷数据集进行聚类,将数据聚成三种模式簇实现样本的优选。利用梯度提升树算法,开展各模式数据集与不划分模式的全数据集下的力学性能建模研究,最后结合网格搜索与交叉验证方法进行模型参数优化。研究结果表明,分模式下模型MAE误差相比于全数据集建模平均减小0.85 MPa。参数优化后,各模式下MAE误差平均减少5.19 MPa,RMSE误差平均减少3.63 MPa,提高了预测模型精度。 展开更多
关键词 热镀锌钢卷 K-MEANS 力学性能建模 梯度提升树 网格搜索法
下载PDF
基于深度蒙特卡洛树搜索的拱坝仓面排序研究 被引量:1
18
作者 宋文帅 任炳昱 关涛 《水力发电学报》 CSCD 北大核心 2024年第3期120-130,共11页
合理的仓面排序方案对于加快工程进度和优化资源配置有着重要影响。然而,现有仓面排序方法将这一序贯决策问题简化,多数采用多属性决策方法,存在仅对大坝实时施工状态进行分析以及未考虑未来仓面浇筑方案对当前排序策略影响的问题;部分... 合理的仓面排序方案对于加快工程进度和优化资源配置有着重要影响。然而,现有仓面排序方法将这一序贯决策问题简化,多数采用多属性决策方法,存在仅对大坝实时施工状态进行分析以及未考虑未来仓面浇筑方案对当前排序策略影响的问题;部分采用多目标优化方法进行仓面排序多目标优化问题分析,但主要是采用静态权重,存在忽略了仓面排序策略随环境动态变化的不足。针对以上问题,本文提出基于深度蒙特卡洛树搜索的拱坝仓面排序方法。首先,分析仓面排序问题的约束条件和目标函数,建立仓面排序强化学习模型;其次,针对仓面排序强化学习模型具有复杂且庞大的离散状态空间,为提高搜索效率,提出融合深度学习的蒙特卡洛树搜索方法,分别利用深度神经网络进行先验动作概率分布预测和策略函数评估;最后,以乌东德拱坝工程为例进行研究,结果表明本文方法可以有效地分析拱坝仓面排序问题,且相比于粒子群方法、证据理论方法,本文方法分析的施工工期可分别提前6天、14天,平均机械利用率分别提高1.19%、1.35%。本研究为拱坝仓面排序分析与优化提供了新思路。 展开更多
关键词 拱坝 仓面排序 深度强化学习 蒙特卡洛树搜索 门控循环单元
下载PDF
Navi:基于自然语言交互的数据分析系统 被引量:1
19
作者 谢宇鹏 骆昱宇 冯建华 《软件学报》 EI CSCD 北大核心 2024年第3期1194-1206,共13页
随着大数据时代的到来,数据分析的作用日益显著.它能够从海量数据中发现有价值的信息,从而更有效地指导用户决策.然而,数据分析流程中存在三大挑战:分析流程高耦合、交互接口种类多和探索分析高耗时.为了应对上述挑战,提出了基于自然语... 随着大数据时代的到来,数据分析的作用日益显著.它能够从海量数据中发现有价值的信息,从而更有效地指导用户决策.然而,数据分析流程中存在三大挑战:分析流程高耦合、交互接口种类多和探索分析高耗时.为了应对上述挑战,提出了基于自然语言交互的数据分析系统Navi.该系统采用模块化的设计原则,抽象出主流数据分析流程的3个核心功能模块:数据查询、可视化生成和可视化探索模块,从而降低系统设计的耦合度.同时,Navi以自然语言作为统一的交互接口,并通过一个任务调度器实现了各功能模块的有效协同.此外,为了解决可视化探索中搜索空间指数级和用户意图不明确的问题,提出了一种基于蒙特卡洛树搜索的可视化自动探索方法,并设计了基于可视化领域知识的剪枝算法和复合奖励函数,提高了搜索效率和结果质量.最后,通过量化实验和用户实验验证了Navi的有效性. 展开更多
关键词 数据分析 数据查询 可视化 自然语言 蒙特卡洛树搜索
下载PDF
三维环境中机器人路径规划算法改进 被引量:1
20
作者 杨小月 李宏伟 +2 位作者 秦雨露 姜懿芮 王步云 《计算机工程与设计》 北大核心 2024年第4期1039-1046,共8页
为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算... 为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。 展开更多
关键词 快速扩展随机树 蚁群算法 B样条曲线 算法融合 双向搜索 机器人路径规划 三维环境
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部