The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in...The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in terms of the mesoscale eddy parameters according to vortex dynamics. The census of mesoscale eddies shows, in general, that the eddy numbers obey the e-folding decay laws in terms of their amplitude, area and lifetime. The intrinsic values in the e-folding laws are used to estimate the lateral eddy viscosity. Dislike the previous theory that diffusivities are proportional to the length square, the eddy mixing rates (diffusivity and viscosity) from satellite mesoscale eddy datasets are proportional to rs to power of 1.8 (slightly less than 2), where rs is the radius of eddy with radius larger than the Batchelor scale. Additionally, the extrapolation of the eddy mixing to the molecule scale implies that the above power laws may hold until the value of rs is less than O (1 m). These mixing rates with the new parameterizations are suggested to use in numerical schemes. Finally, the climatological distributions of eddy viscosity are calculated.展开更多
Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing, heat and gases exchange across air-sea interface. The en...Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing, heat and gases exchange across air-sea interface. The energy loss from wave breaking and the bubble plume penetration depth are estimated. As a consequence, the vertical distribution of the turbulent kinetic energy (TKE), the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided. It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface. High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than vw1( = κu *wz), the value predicted for the wall layer scaling close to the surface, where u *w is the friction velocity in water, κ with 0. 4 is the yon Kármán constant, and z is the water depth, and the strength of the eddy viscosity depends both on wind speed and sea state, and decays rapidly through the depth. This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer, well above the classical values expected from the similarity theory. Deeper down, however, the effects of wave breaking on the vertical mixing become less important.展开更多
The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column. Ekman wind-driven current model and adjoint assimilation technique are used to ...The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column. Ekman wind-driven current model and adjoint assimilation technique are used to calculate the vertical profiles of eddy viscosity by fitting model results to the observation data. The data used in the paper include observed wind data and ADCP data obtained at Wenchang Oil Rig on the SCS (the South China Sea) shelf in August 2002. Different simulations under different wind conditions are analyzed to explore how the eddy viscosity develops with varying wind field. The results show that the eddy viscosity endured gradual variations in the range of 10^-3 -10^-2 m^2 /s during the periods of wind changes. The mean eddy viscosity undergoing strong wind could rise by about 25% as compared to the value under weak wind.展开更多
Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stabilit...Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly. A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (A(H)), The computed result shows that A(H) has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near the spur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical model respectively to study the effect of vertical eddy viscosity coefficient (A(V)). The computed result shows that the absolute value of A(V) is inversely proportional to that of horizontal velocity, and the vertical gradient value of A(V) determines the vertical distribution of horizontal velocity, The distribution form of A(V) is theoretically recommended as a parabolic type, of which the maximum value appears at 0.5 H.展开更多
In this study, we examine the results obtained by the Finite-volume Coastal Ocean Circulation Model(FVCOM) regarding the effects of eddy viscosity and bathymetry on the three-dimensional(3 D) Lagrangian residual veloc...In this study, we examine the results obtained by the Finite-volume Coastal Ocean Circulation Model(FVCOM) regarding the effects of eddy viscosity and bathymetry on the three-dimensional(3 D) Lagrangian residual velocity(LRV) in a narrow bay. The results are cast in terms of two nondimensional numbers: the ratio of friction to local acceleration(δ) and the ratio of the minimum depth over shoals to the maximum depth in the channel(ε). The ratio δ depends on the eddy viscosity and mean depth. For a given eddy viscosity, when ε > 0.5, the along-estuary LRV tends to be vertically sheared and when ε < 0.5, the exchange is laterally sheared. When ε << 1, the structure of the 3 D, depth-integrated, and breadth-averaged LRV changes only slightly as δ increases. For ε values between 0.33 and 0.5, the structure of the 3 D LRV is mainly laterally sheared. In the same ε range, the 3 D and depth-integrated LRV exhibit reversed structures from high to low δ values. In addition, the breadth-averaged LRV weakens the typical twolayered circulation when δ decreases. When ε is 1, the two-layered vertical structure reverses direction, and a three-layered vertical structure develops in the outer bay as δ decreases.展开更多
In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in...In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magni- tude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the eddy viscosity near the bottom than the structure in the upper water layer.展开更多
A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy...A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy viscosity is evaluated based on computational results from a two-equation turbulence model in which the eddy viscosity varies with time and space. The present eddy viscosity model simplifies much of the mathematical complexity in many existing models. Predictions from the present model have been compared with a wide range of experimental data. It is found that the eddy viscosity model adopted in the present study is physically reasonable.展开更多
This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods w...This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods with and without the CEV assumption are presented,followed by a discussion of the two methods’solution stability.Second,the sensitivity accuracy,adjoint solution stability,and Root Mean Square(RMS)residual convergence rates at both design and offdesign operating points are compared between the CEV and full viscosity adjoint methods in detail.Finally,a multi-point steady aerodynamic and a multi-objective unsteady aerodynamic and aeroelastic coupled design optimizations are performed to study the impact of the CEV assumption on optimization.Two gradient-based optimizers,the Sequential Least-Square Quadratic Programming(SLSQP)method and Steepest Descent Method(SDM)are respectively used to draw a firm conclusion.The results from the transonic NASA Rotor 67 show that the CEV assumption can deteriorate RMS residual convergence rates and even lead to solution instability,especially at a near stall point.Compared with the steady cases,the effect of the CEV assumption on unsteady sensitivity accuracy is much stronger.Nevertheless,the CEV adjoint solver is still capable of achieving optimization goals to some extent,particularly if the flow under consideration is benign.展开更多
We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme ...We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme stabilizes convection dominated problems and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea- tures including parameter free for the pressure stabilized term and calculations required for higher order derivatives. Moreover, it requires only the solutions of the linear system arising from an Oseen problem per time step and has second order temporal accuracy. The method achieves optimal accuracy with respect to solution regularity.展开更多
Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been fi...Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.展开更多
A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosi...A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-展开更多
The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer ...The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer in the western ECS is analyzed based on records measured by moored acoustic Doppler current profilers from June to October 2014.Results show that the M_(2) tide is strong and shows a barotropic feature,whereas the O_(1) tide is much weaker.Based on the M_(2) tidal currents,the eddy viscosity in the bottom Ekman boundary layer is estimated with three schemes.The estimated eddy viscosity values vary within 10^(-4)–10^(-2)m^(2) s^(−1),reaching a maximum at approximately 5 m height from the bottom and decreasing exponentially with the height at all three stations.Moreover,the shear production of turbulent kinetic energy is calculated to quantify the mixing induced by different tidal constituents.The results show that the shear production of the M_(2) tide is much stronger than that of the O_(1) tide and shows a bottom intensified feature.展开更多
文摘The relationship of lateral eddy viscosity depending on length scale is estimated with the decay rate of mesoscale eddies identified from sea level anomaly of satellite observations. The eddy viscosity is expressed in terms of the mesoscale eddy parameters according to vortex dynamics. The census of mesoscale eddies shows, in general, that the eddy numbers obey the e-folding decay laws in terms of their amplitude, area and lifetime. The intrinsic values in the e-folding laws are used to estimate the lateral eddy viscosity. Dislike the previous theory that diffusivities are proportional to the length square, the eddy mixing rates (diffusivity and viscosity) from satellite mesoscale eddy datasets are proportional to rs to power of 1.8 (slightly less than 2), where rs is the radius of eddy with radius larger than the Batchelor scale. Additionally, the extrapolation of the eddy mixing to the molecule scale implies that the above power laws may hold until the value of rs is less than O (1 m). These mixing rates with the new parameterizations are suggested to use in numerical schemes. Finally, the climatological distributions of eddy viscosity are calculated.
基金This research was supported by the National Natural Science Foundation of China under contract Nos 40576021 and 40531005.
文摘Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing, heat and gases exchange across air-sea interface. The energy loss from wave breaking and the bubble plume penetration depth are estimated. As a consequence, the vertical distribution of the turbulent kinetic energy (TKE), the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided. It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface. High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than vw1( = κu *wz), the value predicted for the wall layer scaling close to the surface, where u *w is the friction velocity in water, κ with 0. 4 is the yon Kármán constant, and z is the water depth, and the strength of the eddy viscosity depends both on wind speed and sea state, and decays rapidly through the depth. This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer, well above the classical values expected from the similarity theory. Deeper down, however, the effects of wave breaking on the vertical mixing become less important.
基金The National Key Basic Research Program of China under contract No. 2005CB422303the International Cooperation Program Project under contract No. 2004DFB02700the National Natural Science Foundation of China under contract No. 40552002
文摘The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column. Ekman wind-driven current model and adjoint assimilation technique are used to calculate the vertical profiles of eddy viscosity by fitting model results to the observation data. The data used in the paper include observed wind data and ADCP data obtained at Wenchang Oil Rig on the SCS (the South China Sea) shelf in August 2002. Different simulations under different wind conditions are analyzed to explore how the eddy viscosity develops with varying wind field. The results show that the eddy viscosity endured gradual variations in the range of 10^-3 -10^-2 m^2 /s during the periods of wind changes. The mean eddy viscosity undergoing strong wind could rise by about 25% as compared to the value under weak wind.
文摘Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly. A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (A(H)), The computed result shows that A(H) has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near the spur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical model respectively to study the effect of vertical eddy viscosity coefficient (A(V)). The computed result shows that the absolute value of A(V) is inversely proportional to that of horizontal velocity, and the vertical gradient value of A(V) determines the vertical distribution of horizontal velocity, The distribution form of A(V) is theoretically recommended as a parabolic type, of which the maximum value appears at 0.5 H.
基金supported by the National Natural Science Foundation of China (No. 41676003)the National Natural Science Foundation of China–Shandong Joint Fund for Marine Science Research Centers (No.U1606402)
文摘In this study, we examine the results obtained by the Finite-volume Coastal Ocean Circulation Model(FVCOM) regarding the effects of eddy viscosity and bathymetry on the three-dimensional(3 D) Lagrangian residual velocity(LRV) in a narrow bay. The results are cast in terms of two nondimensional numbers: the ratio of friction to local acceleration(δ) and the ratio of the minimum depth over shoals to the maximum depth in the channel(ε). The ratio δ depends on the eddy viscosity and mean depth. For a given eddy viscosity, when ε > 0.5, the along-estuary LRV tends to be vertically sheared and when ε < 0.5, the exchange is laterally sheared. When ε << 1, the structure of the 3 D, depth-integrated, and breadth-averaged LRV changes only slightly as δ increases. For ε values between 0.33 and 0.5, the structure of the 3 D LRV is mainly laterally sheared. In the same ε range, the 3 D and depth-integrated LRV exhibit reversed structures from high to low δ values. In addition, the breadth-averaged LRV weakens the typical twolayered circulation when δ decreases. When ε is 1, the two-layered vertical structure reverses direction, and a three-layered vertical structure develops in the outer bay as δ decreases.
基金supported by the National Natural Science Foundation of China (No. 41676003)NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606402)
文摘In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magni- tude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the eddy viscosity near the bottom than the structure in the upper water layer.
文摘A one-layer time-invariant eddy viscosity model is specified to develop a mathematical model for describing the essential features of the turbulent wave boundary layer over a rough bed. The functional form of the eddy viscosity is evaluated based on computational results from a two-equation turbulence model in which the eddy viscosity varies with time and space. The present eddy viscosity model simplifies much of the mathematical complexity in many existing models. Predictions from the present model have been compared with a wide range of experimental data. It is found that the eddy viscosity model adopted in the present study is physically reasonable.
基金supported by the National Science and Technology Major Project,China(No.2017-II-0009-0023)China’s 111 project(No.B17037)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China.
文摘This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods with and without the CEV assumption are presented,followed by a discussion of the two methods’solution stability.Second,the sensitivity accuracy,adjoint solution stability,and Root Mean Square(RMS)residual convergence rates at both design and offdesign operating points are compared between the CEV and full viscosity adjoint methods in detail.Finally,a multi-point steady aerodynamic and a multi-objective unsteady aerodynamic and aeroelastic coupled design optimizations are performed to study the impact of the CEV assumption on optimization.Two gradient-based optimizers,the Sequential Least-Square Quadratic Programming(SLSQP)method and Steepest Descent Method(SDM)are respectively used to draw a firm conclusion.The results from the transonic NASA Rotor 67 show that the CEV assumption can deteriorate RMS residual convergence rates and even lead to solution instability,especially at a near stall point.Compared with the steady cases,the effect of the CEV assumption on unsteady sensitivity accuracy is much stronger.Nevertheless,the CEV adjoint solver is still capable of achieving optimization goals to some extent,particularly if the flow under consideration is benign.
基金Acknowledgments. The work is supported by the Natural Science Foundation of China (No. 10671154 and No. 11071184) and the National Basic Research Program (No. 2005CB321703). It is also supported by Sichuan Science and Technology Project (No. 05GG006-006-2) and Science Research Foundation of UESTC.
文摘We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme stabilizes convection dominated problems and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea- tures including parameter free for the pressure stabilized term and calculations required for higher order derivatives. Moreover, it requires only the solutions of the linear system arising from an Oseen problem per time step and has second order temporal accuracy. The method achieves optimal accuracy with respect to solution regularity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)Opening Subject of State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.
基金Project supported by the National Natural Science Foundation of China.
文摘A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY21D060005)the Shandong Provincial Natural Science Foundation(No.ZR2022MD082)+2 种基金the Joint Project of Zhoushan Municipality and Zhejiang University(No.2019C810060)the Open Fund Project of Key Laboratory of Marine Environmental Information Technologythe Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19060201).
文摘The East China Sea(ECS)boasts a vast continental shelf,where strong tidal motions play an important role in the substance transport and energy budget.In this study,the tide-induced mixing in the bottom boundary layer in the western ECS is analyzed based on records measured by moored acoustic Doppler current profilers from June to October 2014.Results show that the M_(2) tide is strong and shows a barotropic feature,whereas the O_(1) tide is much weaker.Based on the M_(2) tidal currents,the eddy viscosity in the bottom Ekman boundary layer is estimated with three schemes.The estimated eddy viscosity values vary within 10^(-4)–10^(-2)m^(2) s^(−1),reaching a maximum at approximately 5 m height from the bottom and decreasing exponentially with the height at all three stations.Moreover,the shear production of turbulent kinetic energy is calculated to quantify the mixing induced by different tidal constituents.The results show that the shear production of the M_(2) tide is much stronger than that of the O_(1) tide and shows a bottom intensified feature.