The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud...The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.展开更多
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the dera...The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.展开更多
Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was s...Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.展开更多
This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject ...This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.展开更多
The criteria for evaluation of train derailment were studied. The worldwide commonly used evaluation criteria for wheel derailment were summarized and their main problems were pointed out. The mechanism of train derai...The criteria for evaluation of train derailment were studied. The worldwide commonly used evaluation criteria for wheel derailment were summarized and their main problems were pointed out. The mechanism of train derailment was expounded on the basis of system dynamics stability concept. And the energy increment criteria were proposed to evaluate train derailment. By applying the criteria, the calculated results concerning 6 cases of freight train derailment on tangent railway line and 6 cases of freight train derailment on bridge were obtained, which are all in agreement with the practical situation. The safety, comfort and stability results concerning 3 cases of freight train running on bridge were analyzed. In addition, the running speed limits of freight train on the Yanconggou and Donggou bridge in the Beijing-Tonghua railway line of 50km/h and 60km/h, respectively, were proposed. And the running speed of freight train on the Nanjing Yangtze River Bridge can reach 70km/h.展开更多
The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicle...The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.展开更多
With the rapid development of high-speed railways around the globe,the safety of vehicles running on bridges during earthquakes has been paid more attention to.In the design of railway bridges,in addition to ensuring ...With the rapid development of high-speed railways around the globe,the safety of vehicles running on bridges during earthquakes has been paid more attention to.In the design of railway bridges,in addition to ensuring the safety of the bridge structure in earthquake,the vehicle safety should also be ensured.Previous studies have focused on the detailed analysis of vehicle derailment on bridges,proposing complex numerical algorithms for wheel-rail contact analysis as well as for parametric analysis,but they are inconvenient for designers.Intensity measure(IM)used in performance-based earthquake engineering is introduced in this study.A method to evaluate the vehicle safety on bridges under earthquakes is proposed with respect to the optimal IM.Then,the vehicle derailment case of the Kumamoto earthquake in Japan verifies the decoupling method of vehicle-bridge interaction model.In the assessment of vehicle derailments,eight IMs are systematically compared:the IMs of bridge deck motion are generally better than those of ground motion;the variation coefficient of spectral intensity of the bridge deck is the smallest at different frequencies.Finally,the derailment fragility cloud map is presented to evaluate the vehicle safety on bridges during earthquakes.展开更多
Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle a...Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle and developed in MATLAB software, which is called dynamical derailment system for CRH (DDSCRH). Analyzed on dynamical derailment process of high speed vehicle by DDSCRH, the critical position on chmb wheel and influence factors on lateral force for derailment are obtained. Finally, high-speed vehicle dynamical simulation is verified on DDSCRH by comparing with the existing results of the line test.展开更多
The simulation package for special research on derailment of high speed vehicle is established.The process of derailment is different from other behaviors of vehicle dynamics because of large lateral displacement of w...The simulation package for special research on derailment of high speed vehicle is established.The process of derailment is different from other behaviors of vehicle dynamics because of large lateral displacement of wheelsets.To get correct results,a new fast algorithm to computing contact force is adopted and the exact geometry analysis is necessary to judge derailment happened.Variation of contact condition and coefficient of friction with speeds are also considered into vehicle-track coupled model.The structure of the package is presented in detail.The results are particular emphasis on investigation influence of maximum track defect,critical vehicle speed and various contact condition on derailment.The simulation can also be used to define the most risk factor leading to derailment.展开更多
In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and ca...In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and can also be applied to explain the reason why wheel climb derailments are almost always accompanied by some wheel unloadings.展开更多
基金supported by the National Key R&D Program“Transportation Infrastructure”“Reveal The List and Take Command”project(2022YFB2603301)National Natural Science Foundation of China(No.52078498)+3 种基金Natural Science Foundation of Hunan Province of China(No.2022JJ30745)Frontier cross research project of Central South University(No.2023QYJC006)Hunan Provincial Science and Technology Promotion Talent Project(No.2020TJ-Q19)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2021-Special-04-2)。
文摘The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.
基金supported by the National Basic Research Program(973)of China(2011CB711103)the National Natural Science Foundation of China(U1134202)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT1178 and SWJTU12ZT01)the 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 780 0 6) FoundationoftheScienceandTechnologySectionoftheRailwayBureauofChina (No .2 0 0 1G0 2 9)
文摘Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.
文摘This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.
基金Project(50078006) supported by the National Natural Science Foundation of China project ( 2001G029+1 种基金 2003G043)supported by the Foundation of the Science and Technology Section of the Railway Bureau of China project (2001053300
文摘The criteria for evaluation of train derailment were studied. The worldwide commonly used evaluation criteria for wheel derailment were summarized and their main problems were pointed out. The mechanism of train derailment was expounded on the basis of system dynamics stability concept. And the energy increment criteria were proposed to evaluate train derailment. By applying the criteria, the calculated results concerning 6 cases of freight train derailment on tangent railway line and 6 cases of freight train derailment on bridge were obtained, which are all in agreement with the practical situation. The safety, comfort and stability results concerning 3 cases of freight train running on bridge were analyzed. In addition, the running speed limits of freight train on the Yanconggou and Donggou bridge in the Beijing-Tonghua railway line of 50km/h and 60km/h, respectively, were proposed. And the running speed of freight train on the Nanjing Yangtze River Bridge can reach 70km/h.
文摘The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.
基金supported by the National Natural Science Foundation of China(Grant No.51678490)the National Science Fund for Distinguished Young Scholars(51525804)。
文摘With the rapid development of high-speed railways around the globe,the safety of vehicles running on bridges during earthquakes has been paid more attention to.In the design of railway bridges,in addition to ensuring the safety of the bridge structure in earthquake,the vehicle safety should also be ensured.Previous studies have focused on the detailed analysis of vehicle derailment on bridges,proposing complex numerical algorithms for wheel-rail contact analysis as well as for parametric analysis,but they are inconvenient for designers.Intensity measure(IM)used in performance-based earthquake engineering is introduced in this study.A method to evaluate the vehicle safety on bridges under earthquakes is proposed with respect to the optimal IM.Then,the vehicle derailment case of the Kumamoto earthquake in Japan verifies the decoupling method of vehicle-bridge interaction model.In the assessment of vehicle derailments,eight IMs are systematically compared:the IMs of bridge deck motion are generally better than those of ground motion;the variation coefficient of spectral intensity of the bridge deck is the smallest at different frequencies.Finally,the derailment fragility cloud map is presented to evaluate the vehicle safety on bridges during earthquakes.
文摘Based on an improved three-dimensional wheel-rail contact trace algorithm and a new model of wheel-rail contact force, wheel-rail derailment dynamical model is established on China Railways High-speed(CRH) vehicle and developed in MATLAB software, which is called dynamical derailment system for CRH (DDSCRH). Analyzed on dynamical derailment process of high speed vehicle by DDSCRH, the critical position on chmb wheel and influence factors on lateral force for derailment are obtained. Finally, high-speed vehicle dynamical simulation is verified on DDSCRH by comparing with the existing results of the line test.
基金Sponsored by the 111 Project(Grant No.B07018)International Cooperation Project in Heilongjiang Province(Grant No.WB06A06)
文摘The simulation package for special research on derailment of high speed vehicle is established.The process of derailment is different from other behaviors of vehicle dynamics because of large lateral displacement of wheelsets.To get correct results,a new fast algorithm to computing contact force is adopted and the exact geometry analysis is necessary to judge derailment happened.Variation of contact condition and coefficient of friction with speeds are also considered into vehicle-track coupled model.The structure of the package is presented in detail.The results are particular emphasis on investigation influence of maximum track defect,critical vehicle speed and various contact condition on derailment.The simulation can also be used to define the most risk factor leading to derailment.
文摘In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and can also be applied to explain the reason why wheel climb derailments are almost always accompanied by some wheel unloadings.