In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modula...In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable;which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine–Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.展开更多
The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota...The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.展开更多
By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pur...By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.展开更多
文摘In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable;which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine–Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.
基金Supported by the Teaching Steering Committee Research Project of Higher-Learning Institutions of Ministry of Education(JZW-16-DD-15)
文摘The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.
基金Supported by the National Natural Science Foundation of China (10775105)
文摘By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.