Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing se...Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.展开更多
Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposur...Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.展开更多
The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low rever...The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.展开更多
A simple and efficient method for the iodination of aromatic compounds has been achieved in the presence of iodine and 1,4- bis(triphenylphosphonium)-2-butene peroxodisulfate.
Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving ch...Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.展开更多
Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality a...Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality assessment, since RK structurally resembles 4-(4-hydroxyphenyl)-2-butanol, which causes leukoderma on consumers’ skin. Here, we present a simple HPLC-fluorescence method for determination of RK in a fragrance mist by pre-column derivatization with 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine (NBD-H), which reacts with the carbonyl group of RK. The NBD-RK derivative was eluted from a reversed-phase ODS column, and detected with excitation at 470 nm and emission at 550 nm. The retention time of NBD-RK derivative obtained by reaction with NBD-H at 80°C for 20 min was 10.3 min. The standard curve was linear in the range of 0.2 to 10 μg/mL, with a correlation coefficient (r<sup>2</sup>) value of 0.9980. The lower limit of detection was 0.018 μg/mL (absolute amount of 1.8 pmol). The coefficients of variation were less than 8.1%. The content of RK in fragrance mist (1.00 mL) was 1.18 ± 0.07 mg (range: 1.12 to 1.28 mg, n = 5). Recovery tests were satisfactory (83.9% ± 3.9%;range: 79.6 to 88.8%, n = 5).展开更多
A new,convenient,efficient,and cost-effective one-pot synthesis of 1H-phenanthro[9,10]imidazol-2-yl from phenantherenquinone and aldehydes,using molecular iodine as catalyst is described.The present methodology offers...A new,convenient,efficient,and cost-effective one-pot synthesis of 1H-phenanthro[9,10]imidazol-2-yl from phenantherenquinone and aldehydes,using molecular iodine as catalyst is described.The present methodology offers several advantages such as excellent yields,simple procedure,shorter reaction times,and the use of inexpensive reagents.展开更多
Trace amines(TAs)are metabolically related to catecholamine and associated with cancer and neurological disorders.Comprehensive measurement of TAs is essential for understanding pathological processes and providing pr...Trace amines(TAs)are metabolically related to catecholamine and associated with cancer and neurological disorders.Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention.However,the trace amounts and chemical instability of TAs challenge quantification.Here,diisopropyl phosphite coupled with chip two-dimensional(2D)liquid chromatography tandem triple-quadrupole mass spectrometry(LC-QQQ/MS)was developed to simultaneously determine TAs and associated metabolites.The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS.This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib.The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells.This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.展开更多
An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) imm...An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31971843)the Technology System of Modern Agricultural Industry in Guangdong Province,China(Grant No.2020KJ105)+1 种基金the Guangzhou Science and Technology Project,Guangdong Province,China(Grant No.202103000075)the Special Rural Revitalization Funds of Guangdong Province,China(Grant No.2021KJ382)。
文摘Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.
基金supported by National Natural Science Foundation of China,82073490.
文摘Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.
基金W.C.acknowledges the startup funds from USTC(Grant#KY2060000150)the Fundamental Research Funds for the Central Universities(WK2060000040).
文摘The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.
文摘A simple and efficient method for the iodination of aromatic compounds has been achieved in the presence of iodine and 1,4- bis(triphenylphosphonium)-2-butene peroxodisulfate.
文摘Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.
文摘Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality assessment, since RK structurally resembles 4-(4-hydroxyphenyl)-2-butanol, which causes leukoderma on consumers’ skin. Here, we present a simple HPLC-fluorescence method for determination of RK in a fragrance mist by pre-column derivatization with 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine (NBD-H), which reacts with the carbonyl group of RK. The NBD-RK derivative was eluted from a reversed-phase ODS column, and detected with excitation at 470 nm and emission at 550 nm. The retention time of NBD-RK derivative obtained by reaction with NBD-H at 80°C for 20 min was 10.3 min. The standard curve was linear in the range of 0.2 to 10 μg/mL, with a correlation coefficient (r<sup>2</sup>) value of 0.9980. The lower limit of detection was 0.018 μg/mL (absolute amount of 1.8 pmol). The coefficients of variation were less than 8.1%. The content of RK in fragrance mist (1.00 mL) was 1.18 ± 0.07 mg (range: 1.12 to 1.28 mg, n = 5). Recovery tests were satisfactory (83.9% ± 3.9%;range: 79.6 to 88.8%, n = 5).
文摘A new,convenient,efficient,and cost-effective one-pot synthesis of 1H-phenanthro[9,10]imidazol-2-yl from phenantherenquinone and aldehydes,using molecular iodine as catalyst is described.The present methodology offers several advantages such as excellent yields,simple procedure,shorter reaction times,and the use of inexpensive reagents.
基金supported by the Science and Technology Development Fund,Macao,China(Grant No.:FDCT0044/2018/AFJ).
文摘Trace amines(TAs)are metabolically related to catecholamine and associated with cancer and neurological disorders.Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention.However,the trace amounts and chemical instability of TAs challenge quantification.Here,diisopropyl phosphite coupled with chip two-dimensional(2D)liquid chromatography tandem triple-quadrupole mass spectrometry(LC-QQQ/MS)was developed to simultaneously determine TAs and associated metabolites.The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS.This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib.The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells.This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.
文摘An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.