Three PRP-type direct search methods for unconstrained optimization are presented. The methods adopt three kinds of recently developed descent conjugate gradient methods and the idea of frame-based direct search metho...Three PRP-type direct search methods for unconstrained optimization are presented. The methods adopt three kinds of recently developed descent conjugate gradient methods and the idea of frame-based direct search method. Global convergence is shown for continuously differentiable functions. Data profile and performance profile are adopted to analyze the numerical experiments and the results show that the proposed methods are effective.展开更多
In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity...In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity of the objective function used. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that all these three new hybrid methods are efficient for the given test problems.展开更多
The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficie...The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush-Kuhn-Tucker (KKT) optimality con- ditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method.展开更多
文摘Three PRP-type direct search methods for unconstrained optimization are presented. The methods adopt three kinds of recently developed descent conjugate gradient methods and the idea of frame-based direct search method. Global convergence is shown for continuously differentiable functions. Data profile and performance profile are adopted to analyze the numerical experiments and the results show that the proposed methods are effective.
文摘In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce suf?cient descent search direction at every iteration. This property is independent of any line search or the convexity of the objective function used. Under suitable conditions, we prove that the proposed methods converge globally for general nonconvex functions. The numerical results show that all these three new hybrid methods are efficient for the given test problems.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11571263,11501579,11701571 and41572315)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGW150809)
文摘The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush-Kuhn-Tucker (KKT) optimality con- ditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method.