A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power load...Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power loads and may cause low-frequency oscillation(LFO)to the train-network system.To solve this issue,a mathematical model of the PETT is firstly proposed and verified based on the extended describing function(EDF)method in this paper.In the proposed model,the LLC converter is simplified to an equivalent circuit consisting of a capacitor and a resistor in parallel.It is further demonstrated that the model can apply to various LLC converters with different topologies and controls.Particularly,when the parameter differences between cells are not obvious,the PETT can be simplified to a single-phase rectifier(i.e.,conventional train)by equivalent transformation.Based on the model of PETT,the system low-frequency stability and influential factors are analyzed by using the generalized Nyquist criterion.Lastly,the correctness and accuracy of theoretical analyses are validated by off-line and hardware-in-the-loop simulation results.展开更多
How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of...How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.展开更多
The modeling approaches of power converters occupy an important position in power electronic systems and have made considerable progress over the past years.Continuous modeling approaches and linearization techniques ...The modeling approaches of power converters occupy an important position in power electronic systems and have made considerable progress over the past years.Continuous modeling approaches and linearization techniques are reviewed,including the state-space average model,generalized average model,averaged small-signal model,and describing function method.A Buck converter with PWM modulation and voltage-mode control is taken as an example to compare the advantages and disadvantages of different methods through simulation analysis.Moreover,the corresponding equivalent circuit with an intuitive physical meaning of state-space average model,generalized average model,and averaged small-signal model is given.The results point out that the generalized average model can improve the modeling accuracy based on the state-space average model.In the linearization techniques,the averaged small-signal model reflects accuracy at low frequencies,but introduces phase lag in the high-frequency region.The describing function method is derived from harmonic linearization,which takes into account the sideband effect and improves the modeling accuracy at high frequencies.展开更多
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
基金supported in part by the National Natural Science Foundation of China(52125705)in part by the Natural Science Foundation of Hunan Province(2022JJ40066)。
文摘Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power loads and may cause low-frequency oscillation(LFO)to the train-network system.To solve this issue,a mathematical model of the PETT is firstly proposed and verified based on the extended describing function(EDF)method in this paper.In the proposed model,the LLC converter is simplified to an equivalent circuit consisting of a capacitor and a resistor in parallel.It is further demonstrated that the model can apply to various LLC converters with different topologies and controls.Particularly,when the parameter differences between cells are not obvious,the PETT can be simplified to a single-phase rectifier(i.e.,conventional train)by equivalent transformation.Based on the model of PETT,the system low-frequency stability and influential factors are analyzed by using the generalized Nyquist criterion.Lastly,the correctness and accuracy of theoretical analyses are validated by off-line and hardware-in-the-loop simulation results.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11827801,12172181 and 11732006).
文摘How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.
基金Supported by the National Natural Science Foundation of China(51777049,51707051).
文摘The modeling approaches of power converters occupy an important position in power electronic systems and have made considerable progress over the past years.Continuous modeling approaches and linearization techniques are reviewed,including the state-space average model,generalized average model,averaged small-signal model,and describing function method.A Buck converter with PWM modulation and voltage-mode control is taken as an example to compare the advantages and disadvantages of different methods through simulation analysis.Moreover,the corresponding equivalent circuit with an intuitive physical meaning of state-space average model,generalized average model,and averaged small-signal model is given.The results point out that the generalized average model can improve the modeling accuracy based on the state-space average model.In the linearization techniques,the averaged small-signal model reflects accuracy at low frequencies,but introduces phase lag in the high-frequency region.The describing function method is derived from harmonic linearization,which takes into account the sideband effect and improves the modeling accuracy at high frequencies.