A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a...The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method.展开更多
This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller a...This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller are considered. For the cases of the additive perturbations and multiplicative perturbations, sufficient conditions are given such that the closed-loop systems are admissible and passive with dissipation η. The observer-based controller gains could be obtained from the solutions of linear matrix inequalities (LMIs). Moreover, the maximum dissipation of the system is provided. Simulation examples are given to show the effectiveness of the deign methods.展开更多
By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with u...By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with uncertain parameters, and sufficient conditions which make the closed-loop system admissible and strictly passive are obtained based on linear matrix inequality (LMI). The nonstrict LMIs restricted conditions which characterize the descriptor system are transformed into strict ones, so testing admissibility and passivity of the system can be finished simultaneously. The design scheme of state feedback controller is also obtained. Finally, a numerical example is given to show the validity and feasibility of the proposed approach.展开更多
This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear...This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear matrix inequality (LMI) condition is derived to construct the full-order observer. The existence and uniqueness of the solution to the obtained observer system are guaranteed. Furthermore, under the same LMI condition and a common assumption, a reduced-order observer is designed. Finally, the design methods are reduced to a strict LMI problem and illustrated by a numerical example.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
The notion of generalized regularity is proposed for rectangular descriptor systems. Generalized regularizability of a rectangular descriptor system via different feedback forms is considered. Necessary and sufficient...The notion of generalized regularity is proposed for rectangular descriptor systems. Generalized regularizability of a rectangular descriptor system via different feedback forms is considered. Necessary and sufficient conditions for generalized regularizability are obtained, which are only dependent upon the open-loop coefficient matrices. It is also shown that under these necessary and sufficient conditions, all the generalized regularizing feedback controllers form a Zarisky open set. A numerical example demonstrates the proposed results.展开更多
The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditi...The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditions for the existence of fuzzy state feedback controller are presented in terms of linear matrix inequality (LMI). The proposed robust H ∞ control laws guarantee that the resulting closed-loop system is regular, impulse free, and stable with prescribed H ∞ norm bounded constraint for all admissible uncertainties. Finally, a numerical example is provided to demonstrate the validity of the proposed method.展开更多
This paper deals with the problem of singular linear quadratic performance with the worst-disturbance rejection for descriptor systems. Under the conditions we give, the worst-disturbance and the optimal control-state...This paper deals with the problem of singular linear quadratic performance with the worst-disturbance rejection for descriptor systems. Under the conditions we give, the worst-disturbance and the optimal control-state pair are unique respectively, the optimal control can be synthesized as state feedback and the closed-loop system is regular, stable and impulse-free.展开更多
Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. In this paper, the authors study the extension of NI theory to descriptor systems. The author...Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. In this paper, the authors study the extension of NI theory to descriptor systems. The authors derive an NI lemma for descriptor systems. This is done by using the transformation from positive real (PR) system to NI system. Then, the Weierstrass Form transformation was involved to transform A and E matrices to be in a special form. An illustrative example is presented to support the result. Negative imaginary systems, positive real systems, descriptor systems, Negative imaginary lemma.展开更多
This article is concerned with the problem of observer-based passive control for descriptor systems with time delay. Sufficient conditions are first presented for the closed loop systems to be admissible and passive w...This article is concerned with the problem of observer-based passive control for descriptor systems with time delay. Sufficient conditions are first presented for the closed loop systems to be admissible and passive with dissipation η in the case of that the time delay is known, and two kinds of methods are given to design the expected observer. Then, the case of that the time delay is unknown or uncertain is discussed. The observer-based control gains could be obtained from the solutions of linear matrix inequalities (LMIs). Simulation examples are given to show the effectiveness of the designed methods.展开更多
This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the ex...This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.展开更多
This paper considers the problems of practical stability analysis and synthesis of linear descriptor systems subject to timevarying and norm-bounded exogenous disturbances. A sufficient condition for the systems to be...This paper considers the problems of practical stability analysis and synthesis of linear descriptor systems subject to timevarying and norm-bounded exogenous disturbances. A sufficient condition for the systems to be regular, impulsive-free and practically stable is derived. Then the synthesis problem is addressed and a state feedback controller is designed. To deal with the computational issue, the conditions of the main results are converted into linear matrix inequality (LMI) feasibility problems. Furthermore, two optimization algorithms are formulated to improve the system performances. Finally, numerical examples are given to illustrate the obtained results.展开更多
This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity condit...This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion.展开更多
The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to...The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.展开更多
This paper considers H-infinity control problem for interval descriptor systems. Necessary and sufficient LMI-based conditions are derived for quadratic-like H-infinity control analysis of interval descriptor systems....This paper considers H-infinity control problem for interval descriptor systems. Necessary and sufficient LMI-based conditions are derived for quadratic-like H-infinity control analysis of interval descriptor systems. Using the analysis result, two types of feedback controllers are designed so that the closed-loop interval descriptor systems are admissible with H-infinity-norm less than a prescribed value. To the best of the authors's knowledge, this is the first paper to deal with the H-infinity control problem of interval descriptor systems in the literature.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a sui...This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback, two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation, and a sufficient condition for two closed-loop systems to be impulse-free is given. The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique, based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems. Secondly, the case of more than two nonlinear descriptor systems is investigated, and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization, respectively. Finally, an illustrative example is studied by using the results proposed in this paper, and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.展开更多
In this paper, the problems of stability for a class of switched positive descriptor systems(SPDSs)with average dwell time(ADT) switching are investigated. First, based on the equivalent switched system and the proper...In this paper, the problems of stability for a class of switched positive descriptor systems(SPDSs)with average dwell time(ADT) switching are investigated. First, based on the equivalent switched system and the properties of the projector matrix, sufficient stabilities are given for the underlying systems in both continuoustime and discrete-time contexts. Then, a sufficient stability condition for the SPDS with both stable and unstable subsystems is obtained. The stability results for the SPDSs are represented in terms of a set of linear programmings(LPs) by the multiple linear co-positive Lyapunov function(MLCLF) approach. Finally, three numerical examples are given to illustrate the effectiveness of the obtained theoretical results.展开更多
In this paper, the stability problems for a class of nonlinear descriptor systems with infinite delays are investigated. A new Lyapunov second stability criteria is obtained, which is different from linear matrix ineq...In this paper, the stability problems for a class of nonlinear descriptor systems with infinite delays are investigated. A new Lyapunov second stability criteria is obtained, which is different from linear matrix inequalities (LMIs) method. Finally, a simple example is given to illustrate the main results.展开更多
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
基金This work was supported by the Chinese National Outstanding Youth Science Foundation (No.69925308).
文摘The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method.
基金supported by the National Natural Science Foundation of China (No.60574011)
文摘This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller are considered. For the cases of the additive perturbations and multiplicative perturbations, sufficient conditions are given such that the closed-loop systems are admissible and passive with dissipation η. The observer-based controller gains could be obtained from the solutions of linear matrix inequalities (LMIs). Moreover, the maximum dissipation of the system is provided. Simulation examples are given to show the effectiveness of the deign methods.
基金Supported by National Natural Science Foundation of P. R, China (60574011)the Distinguished Teacher Funds of Liaoning Universities (124210)the Key Laboratory Funds of Liaoning Universities of Intelligent Control Theory and Applications
文摘By means of matrix decomposition method a criterion is presented for the admissibility of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S fuzzy descriptor system with uncertain parameters, and sufficient conditions which make the closed-loop system admissible and strictly passive are obtained based on linear matrix inequality (LMI). The nonstrict LMIs restricted conditions which characterize the descriptor system are transformed into strict ones, so testing admissibility and passivity of the system can be finished simultaneously. The design scheme of state feedback controller is also obtained. Finally, a numerical example is given to show the validity and feasibility of the proposed approach.
基金supported by National Basic Research Program of China (973 Program) (No. 2009CB320601)National Natural Science Foundation of China (No. 60904009)Fundamental Research Funds for the Central Universities (No. 100406010, No. 090408001)
文摘This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear matrix inequality (LMI) condition is derived to construct the full-order observer. The existence and uniqueness of the solution to the obtained observer system are guaranteed. Furthermore, under the same LMI condition and a common assumption, a reduced-order observer is designed. Finally, the design methods are reduced to a strict LMI problem and illustrated by a numerical example.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金the Chinese Outstanding Youth Foundation(No. 69925308)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘The notion of generalized regularity is proposed for rectangular descriptor systems. Generalized regularizability of a rectangular descriptor system via different feedback forms is considered. Necessary and sufficient conditions for generalized regularizability are obtained, which are only dependent upon the open-loop coefficient matrices. It is also shown that under these necessary and sufficient conditions, all the generalized regularizing feedback controllers form a Zarisky open set. A numerical example demonstrates the proposed results.
文摘The problem of robust H ∞ fuzzy state feedback control for uncertain fuzzy descriptor systems with state delay is solved. In the case that time-varying uncertainties are in all parameter matrices, sufficient conditions for the existence of fuzzy state feedback controller are presented in terms of linear matrix inequality (LMI). The proposed robust H ∞ control laws guarantee that the resulting closed-loop system is regular, impulse free, and stable with prescribed H ∞ norm bounded constraint for all admissible uncertainties. Finally, a numerical example is provided to demonstrate the validity of the proposed method.
基金This work was supported by Natural Science Foundation of Shandong Province (No. Y2004A05, Y2004A07)Science Technology Planning Project of Shandong Provincial Education Department(No. J05P51) and Science Research Foundation of Shandong Economic University
文摘This paper deals with the problem of singular linear quadratic performance with the worst-disturbance rejection for descriptor systems. Under the conditions we give, the worst-disturbance and the optimal control-state pair are unique respectively, the optimal control can be synthesized as state feedback and the closed-loop system is regular, stable and impulse-free.
文摘Flexible structure dynamics with collocated force actuators and position sensors lead to negative imaginary (NI) systems. In this paper, the authors study the extension of NI theory to descriptor systems. The authors derive an NI lemma for descriptor systems. This is done by using the transformation from positive real (PR) system to NI system. Then, the Weierstrass Form transformation was involved to transform A and E matrices to be in a special form. An illustrative example is presented to support the result. Negative imaginary systems, positive real systems, descriptor systems, Negative imaginary lemma.
基金supported by the National Natural Science Foundation of China (60574011)
文摘This article is concerned with the problem of observer-based passive control for descriptor systems with time delay. Sufficient conditions are first presented for the closed loop systems to be admissible and passive with dissipation η in the case of that the time delay is known, and two kinds of methods are given to design the expected observer. Then, the case of that the time delay is unknown or uncertain is discussed. The observer-based control gains could be obtained from the solutions of linear matrix inequalities (LMIs). Simulation examples are given to show the effectiveness of the designed methods.
文摘This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.
基金National Natural Science Foundation of China(No.60574011).
文摘This paper considers the problems of practical stability analysis and synthesis of linear descriptor systems subject to timevarying and norm-bounded exogenous disturbances. A sufficient condition for the systems to be regular, impulsive-free and practically stable is derived. Then the synthesis problem is addressed and a state feedback controller is designed. To deal with the computational issue, the conditions of the main results are converted into linear matrix inequality (LMI) feasibility problems. Furthermore, two optimization algorithms are formulated to improve the system performances. Finally, numerical examples are given to illustrate the obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60821063 and 61034005)National Basic Research Program of China (Grant No. 2009CB32060)
文摘This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.
基金supported by the National Science Council of Taiwan (No.98-2221-E-151-049)
文摘This paper considers H-infinity control problem for interval descriptor systems. Necessary and sufficient LMI-based conditions are derived for quadratic-like H-infinity control analysis of interval descriptor systems. Using the analysis result, two types of feedback controllers are designed so that the closed-loop interval descriptor systems are admissible with H-infinity-norm less than a prescribed value. To the best of the authors's knowledge, this is the first paper to deal with the H-infinity control problem of interval descriptor systems in the literature.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
基金Supported by the National Natural Science Foundation of China (Grant No. 60774009)the Natural Science Foundation of Shandong Province(Grant No. Y2006G10)the Research Fund for the Doctoral Program of Chinese Higher Education (Grant No. 200804220028)
文摘This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback, two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation, and a sufficient condition for two closed-loop systems to be impulse-free is given. The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique, based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems. Secondly, the case of more than two nonlinear descriptor systems is investigated, and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization, respectively. Finally, an illustrative example is studied by using the results proposed in this paper, and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.
基金the National Natural Science Foundation of China(Nos.61374070 and 61374154)the Fundamental Research Funds for the Central Universities of China(Nos.DUT14QY14 and DUT14QY31)
文摘In this paper, the problems of stability for a class of switched positive descriptor systems(SPDSs)with average dwell time(ADT) switching are investigated. First, based on the equivalent switched system and the properties of the projector matrix, sufficient stabilities are given for the underlying systems in both continuoustime and discrete-time contexts. Then, a sufficient stability condition for the SPDS with both stable and unstable subsystems is obtained. The stability results for the SPDSs are represented in terms of a set of linear programmings(LPs) by the multiple linear co-positive Lyapunov function(MLCLF) approach. Finally, three numerical examples are given to illustrate the effectiveness of the obtained theoretical results.
基金Support by the National Natural Science Foundation of China (10771001)the Ph.D Programs Foundation of Ministry of Education of China (20093401110001) the Major Programs of Natural Science Foundation of Anhui Provincial Colleges (KJ2010ZD02)
文摘In this paper, the stability problems for a class of nonlinear descriptor systems with infinite delays are investigated. A new Lyapunov second stability criteria is obtained, which is different from linear matrix inequalities (LMIs) method. Finally, a simple example is given to illustrate the main results.