Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon S...Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China was analyzed using high-throughput amplicon pyrosequencing analysis. The sequences of the most abundant OUTs (Operational Taxonomic Units) in the sediment of Crescent Moon Spring were compared with the sequences of those most abundant OUTs of various origins from NCBI GenBank database to detect the origins of bacteria in the sediment of Crescent Moon Spring. Also, bacterial compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide were compared using cluster analysis to determine the possible factors affecting bacterial compositions. In total, 11,855 sequences were obtained and 30 phyla were identified. At the phylum level, the dominant phylum was Proteobacteria with α-Proteobacteria being the first dominant class and the second dominant phylum was Planctomycetes. Our finding that α-Proteobacteria being the first dominant class of Proteobacteria and Planctomycetes being the second dominant phyla are somewhat contradictory with reports from other desert lake sediments. This difference could be resulted from water hydration and conductivity, as well as oligotrophic conditions of Crescent Moon Spring. At the genus level, Rhodobacter, Caldilinea, Planctomyces, and Porphyrobacterwere the dominant genera in the sediment of Crescent Moon Spring. Comparisons on sequences of the most abundant OUTs (including OTU3615, OTU6535, and OTU6646) between sediment of Crescent Moon Spring and various origins from NCBI GenBank database indicate that the origins of bacteria in the sediment of Crescent Moon Spring are likely from the underground water. Furthermore, cluster analysis on comparisons of bacteria compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide shows that at regional scales, bacterial compositions may be mainly affected by geographical patterns, precipitation amounts, and pH values. Collectively, our results provide new knowledge on the bacterial diversity in desert lake ecosystems.展开更多
基金supported by the National Natural Science Foundation of China(41271265,31570498,31300411)the Science and Technology Projects in Gansu Province(1304NKCA135)the Foundation of China Scholarship Council
文摘Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China was analyzed using high-throughput amplicon pyrosequencing analysis. The sequences of the most abundant OUTs (Operational Taxonomic Units) in the sediment of Crescent Moon Spring were compared with the sequences of those most abundant OUTs of various origins from NCBI GenBank database to detect the origins of bacteria in the sediment of Crescent Moon Spring. Also, bacterial compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide were compared using cluster analysis to determine the possible factors affecting bacterial compositions. In total, 11,855 sequences were obtained and 30 phyla were identified. At the phylum level, the dominant phylum was Proteobacteria with α-Proteobacteria being the first dominant class and the second dominant phylum was Planctomycetes. Our finding that α-Proteobacteria being the first dominant class of Proteobacteria and Planctomycetes being the second dominant phyla are somewhat contradictory with reports from other desert lake sediments. This difference could be resulted from water hydration and conductivity, as well as oligotrophic conditions of Crescent Moon Spring. At the genus level, Rhodobacter, Caldilinea, Planctomyces, and Porphyrobacterwere the dominant genera in the sediment of Crescent Moon Spring. Comparisons on sequences of the most abundant OUTs (including OTU3615, OTU6535, and OTU6646) between sediment of Crescent Moon Spring and various origins from NCBI GenBank database indicate that the origins of bacteria in the sediment of Crescent Moon Spring are likely from the underground water. Furthermore, cluster analysis on comparisons of bacteria compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide shows that at regional scales, bacterial compositions may be mainly affected by geographical patterns, precipitation amounts, and pH values. Collectively, our results provide new knowledge on the bacterial diversity in desert lake ecosystems.