Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants durin...Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.展开更多
Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as wel...Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.展开更多
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he...Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.展开更多
[Objectives]The paper was to investigate the distribution characteristics of soil total nitrogen in low-efficiency forest land in the northern windy desert area of Jingbian County.[Methods]The distribution of soil tot...[Objectives]The paper was to investigate the distribution characteristics of soil total nitrogen in low-efficiency forest land in the northern windy desert area of Jingbian County.[Methods]The distribution of soil total nitrogen in the 0-40 cm soil layer of 5 towns in the northern windy desert area of Jingbian County was studied through field sampling and laboratory detection.[Results]The average soil total nitrogen contents of Hongdunjie Town,Haizetan Town,Huanghaojie Town,Ningtiaoliang Town,Dongkeng Town and windy desert area in the 0-20 cm soil layer were 0.259,0.224,0.242,0.248,0.431 and 0.275 g/kg,respectively.The soil total nitrogen content in Dongkeng Town was higher than those in other towns,while there was little difference among other regions.The average total nitrogen contents in the 20-40 cm soil layer were 0.239,0.285,0.113,0.262,0.349 and 0.241 g/kg,respectively.The soil total nitrogen content in Huanghaojie Town was slightly lower than those in other towns,while that in Dongkeng town was higher.The variation coefficient of soil total nitrogen content in the survey area was greater than 30%,and there was great difference in spatial distribution.With the increase of soil depth,there was little change in soil total nitrogen content,namely the soil total nitrogen contents in 5 towns and windy desert area were not statistically different in the 0-40 cm soil layer.According to the nutrient grading standard of the second national soil survey,the soil total nitrogen content in the survey area was in the deficiency grade.[Conclusions]The research will provide a scientific guidance for the healthy and sustainable development of vegetation in arid regions.展开更多
Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian f...Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.展开更多
Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower re...Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.展开更多
The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highwa...The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.展开更多
Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is p...Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability.展开更多
Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </s...Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </span><span style="font-family:Verdana;">the tree species composition, population structure, and providing evidence of anthropogenic disturbances in the riparian forest of Lake Barombi Kotto. The objectives were to determine the tree species composition and diversity in the riparian forest around Lake Barombi Kotto, to elucidate the forest structure and to document the anthropogenic disturbances in this forest. Five plots were laid within which </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">tree enumeration and measurement of dbh were carried out.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">Trees were identified using scientific identification keys in the Flora of W</span><span style="font-family:Verdana;">est Africa. Disturbance scores were given to each site by qualitatively assessing various disturbances. A total of 340 trees belonging to 70 plant species, 63 genera and 28 plant families were enumerated. Shannon-Wiener diversity varied across sites, with the highest value (H = 3.45) recorded in Tung and the lowest (H = 2.21) in Malenda. Population structure differed across sites,</span><span style="font-family:Verdana;"> the largest stand basal area of 43.78 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha was recorded in Bondokombo while the smallest (2.15 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha)</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">was recorded in the Sacred Island. </span><i><span style="font-family:Verdana;">Cecropia</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">peltata</span></i><span style="font-family:""><span style="font-family:Verdana;"> L., </span><i><span style="font-family:Verdana;">Pseudospondias</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">macrocarpa</span></i><i><span style="font-family:""> </span></i><span style="font-family:""><span style="font-family:Verdana;">Oliv. Pierre and </span><i><span style="font-family:Verdana;">Ceiba</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">pentandra</span></i><span style="font-family:Verdana;"> (L.) Gaertn had the largest basal areas across the different sites. Species rich families were Malvaceae (9 species), Fabaceae (9 species), Annonaceae</span><span style="font-family:""> </span><span style="font-family:Verdana;">(4 species), and Anacardiaceae (4). This study shows that, there is a high tree species diversity in the protected forest (Tung) but the other unprotected sites are highly disturbed by anthropogenic activities. There is need to develop and enhance existing management policies for this riparian forest, especially by replanting the cut trees and creating a protected riparian buffer to conserve its floristic diversity and ecological functions.展开更多
Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades...Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades,the mortality of the Euphrates poplar(Populus euphratica)along the Tarim River in Northwest China has increased.However,few studies have quantified the causes of mortality and regeneration in this azonal riparian forest type.Methods:The present study describes the annual hydrological response of tree mortality and regeneration in forest gaps.A total of 60 canopy gaps were investigated in six replicate grid plots(50m×50 m)and the annual runoff and water consumption data during the period of 1955–2016 were collected from hydrological stations in the middle reaches of the Tarim River.We compared the regeneration density of seedlings and saplings within the canopy gap areas(CGAs),undercanopy areas(UCAs),and uncovered riverbank areas(RBAs)through detailed field investigation.Results:Our study found that the mortality of young and middle-aged gap makers has increased remarkably over recent decades,particularly since the year 1996.The main results indicated that regional water scarcity was the primary limiting factor for long-term changes in tree mortality,as shown by a significant correlation between the diameter at breast height(DBH)of dead trees and the annual surface water.The average density(or regeneration rate)of seedlings and saplings was highest in the RBAs,intermediate in the CGAs,and lowest in the UCAs.Compared with the UCAs,the CGAs promote tree regeneration to some extent by providing favorable conditions for the survival and growth of seedlings and saplings,which would otherwise be suppressed in the understory.Furthermore,although the density of seedlings and saplings in the CGAs was not as high as in the RBAs,the survival rate was higher in the CGAs than in the RBAs.Conclusion:Forest canopy gaps in floodplain areas can play a decisive role in the long-term germination and regeneration of plant species.However,as a typical phreatophyte in this hyper-arid region,the ecosystem structure,functions and services of this fragile P.euphratica floodplain forests are threatened by a continuous decrease of water resources,due to excessive water use for agricultural irrigation,which has resulted in a severe reduction of intact poplar forests.Furthermore,the survival of seedlings and saplings is influenced by light availability and soil water at the regional scale.Our findings suggest that policymakers may need to reconsider the restoration and regeneration measures implemented in riparian P.euphratica forests to improve flood water efficiency and create canopy gaps.Our results provide with valuable reference information for the conservation and sustainable development of floodplain forest ecosystems.展开更多
Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried ...Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried out to examine effects of land use activities on riparian vegetation, soil and water quality along two major rivers (Chemosit and Kipsonoi) of South West Mau Forest (SWMF). Land use activities adjacent to these rivers and biodiversity disturbance on the riparian zone were identified and underpinned to changes on Total Nitrogen, Total Phosphorous, Potassium, Sulphur, Cadmium, Copper, Lead, Total Suspended Solids and soil Organic Carbon. Three sampling sites designated(upstream, midstream and downstream) were identified and established along each river as guided by existing land use activities represented by forest, tea plantation and mixed agricultural farming respectively. At each sampling site, a 200 m × 50 m section was systematically marked on each side of the river bank;the longest side being parallel to the river flow and divided into three belts transects each 20 m × 50 m, spaced 70 m apart. Six distinct land use activities (indigenous forest, food crop, tree and tea farming, livestock keeping and urban settlement) were identified as the major land use activities in SWMF. Plant species richness decreased and overall riparian disturbance increased from upstream (intact canopy with native vegetation) to mid-stream and downstream as epitomized by the structure, biodiversity disturbance resulting from extensive and intensive farming, intrusion of exotic species to livestock grazing and urban settlement. Variation among sampling sites in Total Suspended Solids, pH, Total Nitrogen, Phosphorus and Potassium were associated to different land use activities along the riparian zone. Total Nitrogen and water pH showed significant sensitivity to land use changes (p < 0.05). Put together these results indicate loss of biodiversity, riparian disturbance hence a need to adopt environmental-friendly land use planning and sustainable farming systems in SWMF.展开更多
The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the d...The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the distances from riverbanks were assessed. For this purpose, the riparian forest of the Maroon River, Iran was divided into three locations with a 200-meter wide zone in between. Thus, the locations studied were named Distance I(riverbank), Distance II(intermediate), and Distance III(farthest from riverbank). In each of these distances, 10 Tamarix arceuthoides and Populus euphratica of each species were randomly selected. At the same time, soil and root samples were collected from the rhizosphere of the tree species studied. Results indicated that totally 13 AMF species were observed in T. arceuthoides and 19 AMF species were recorded in P. euphratica rhizosphere belonging to 6 genera and 6 families. In these AMF species, Glomus segmentatum, G. geosporum, G. rubiforme, G. nanolumen, G. spinuliferum, Claroideoglomus drummondii, Gigaspora gigantea and Acaulospora paulinae appeared only in P. euphratica rhizosphere, while G. multiforum and Claroideoglomus claroideum were observed only in T. arceuthoides rhizosphere. Moreover, Distance II had the least AMF species both in T. arceuthoides and in P. euphratica rhizospheres, and also the least spore density and root colonization rate. Our results are important in that they provide a list of resistant AMF species that could be used in the conservation of biodiversity.展开更多
Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This r...Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This riverbank restoration work was implemented in the year 2010 and two onsite vegetation surveys, one shortly after the construction, and one in 2013. Besides that, the structures of reinforcement work, and its effectiveness were evaluated. By means of the vegetation survey, the applied species were examined for their ability to establish the riverbank in an environmentally sustainable way. Most notably, the species Calliandra brevipes Benth. (Fabaceae, Mimosoideae), Phyllanthus sellowianus Müller Arg. (Euphorbiaceae), Salix humboldtiana Willd. (Salicaceae), Bauhinia forficate Link (Leguminosae), Inga marginata Willd. (Mimosoideae) and Ateleia glazioveana Baill. (Leguminosae, Papilionoideae) showed a good growth development. The proportion of spontaneous vegetation increased significantly, with Pennisetum purpureum Schumach. becoming a dominating species. Resulting from that, the intervention can be assessed as functional and safe, but the strong increase of spontaneous vegetation is undesirable due to less flood resistance. The vegetated riprap could be the best to meet the expectations of the construction elements. Partly, the anchored willows showed as well a good growth development whereas the species used for the hedge brush layer could not develop as expected in large parts of the construction.展开更多
Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple force...Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple forces with varying degree of influences. This study examined the influence of land use and environmental gradient to the structure and composition of the riparian woody plants in northern Tanzania. A total of 270 plots were surveyed for woody plant species in the riparian ecosystems and later analysed to determine the influence of land use categories (homegarden, crop field, woodlot, open canopy forest, and closed canopy forest) and environmental variables (temperature, precipitation, elevation and slope) to the species richness, abundance, and stand parameters. Basal area was higher in woodlots, homegardens and crop fields than in the open and closed canopy forests;and as expected the reverse was true for the number of stocking density. Correlation among stand parameters with environmental variables varied significantly. Species richness and species abundance were negatively correlated to precipitation, temperature and elevation, while stocking density and basal area were positively correlated to precipitation. The study recommends continual retentions of trees on farm, further promoting of agroforestry interventions and sustainable utilization of woody plants in open and close canopy forests.展开更多
The restoration of the riparian vegetation disturbed by human activities is one of the hotspots of watershed ecology. Through interpreting the images of Remote Sensing in 1985 and 1999, the basic information of forest...The restoration of the riparian vegetation disturbed by human activities is one of the hotspots of watershed ecology. Through interpreting the images of Remote Sensing in 1985 and 1999, the basic information of forest resources of Lushuihe Forest Bureau, which is a typical forest area of Changbai Mountain, was obtained with support of GIS. By dividing Land covers of Lushuihe area into 10 types (water body, residential land, stump land, farming land, wetland, mature conifer forest, midlife conifer forest, mature broadleaf forest, midlife broadleaf forest, and man-made young forest) and dividing the riparian zone into four buffers (in turn, 1000, 2000, 3000, 4000 m away from the river), the changes of riparian forest resources during 1985-1999 were analyzed. The results showed that the deforestation intension has obviously decreased and the whole environment has been evidently improved, but the riparian ecosystem was still flimsy. In buffer 1, 2, 3, the area of midlife conifer forest increased largely, but the areas of other types of land covers all decreased. Midlife conifer forest had a comparatively good status in the three buffers. In buffer 4, midlife conifer forest, mature conifer forest, and mature broadleaf forest formed a forest-age rank that is helpful to stabilize the forest ecosystem and exert its functions. Area percentage of wetland decreased in buffer 1, buffer 2, and buffer 3, even in buffer 4 in which forest ecosystem rehabilitated comparatively well, so protecting and rehabilitating wetland is a very difficult task.展开更多
This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river chan...This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.展开更多
基金funded by the General Project of Key R&D Plan of Ningxia Hui Autonomous Region,China(2021BEG03008,2022BEG02012)the Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(2021GKLRLX13)the National Natural Science Foundation of China(31760707).
文摘Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (91025024)the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05)the West Light Foundation of the Chinese Academy of Sciences
文摘Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.
基金supported by the National Key Research and Development program (2016YFC0400908)the National Natural Science Foundation of China (Nos. 41101026, 31370466)the STS project of Chinese academy of sciences (29Y829731)
文摘Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.
基金Supported by Internal Scientific Research Project of Shaanxi Provincial Land Engineering Construction Group Co.,Ltd.(DJNY2022-21)Shaanxi Provincial Youth Talent Promotion Program(NYKJ202228)+1 种基金Technology Innovation Center for Land Engineering and Human Settlements,Shaanxi Provincial Land Engineering Construction Group Co.,Ltd.and Xi an Jiaotong University(2021WHZ0094)Shaanxi Provincial Enterprise Innovation Striving for the First Young Talents Support Program Project(2021-1-2).
文摘[Objectives]The paper was to investigate the distribution characteristics of soil total nitrogen in low-efficiency forest land in the northern windy desert area of Jingbian County.[Methods]The distribution of soil total nitrogen in the 0-40 cm soil layer of 5 towns in the northern windy desert area of Jingbian County was studied through field sampling and laboratory detection.[Results]The average soil total nitrogen contents of Hongdunjie Town,Haizetan Town,Huanghaojie Town,Ningtiaoliang Town,Dongkeng Town and windy desert area in the 0-20 cm soil layer were 0.259,0.224,0.242,0.248,0.431 and 0.275 g/kg,respectively.The soil total nitrogen content in Dongkeng Town was higher than those in other towns,while there was little difference among other regions.The average total nitrogen contents in the 20-40 cm soil layer were 0.239,0.285,0.113,0.262,0.349 and 0.241 g/kg,respectively.The soil total nitrogen content in Huanghaojie Town was slightly lower than those in other towns,while that in Dongkeng town was higher.The variation coefficient of soil total nitrogen content in the survey area was greater than 30%,and there was great difference in spatial distribution.With the increase of soil depth,there was little change in soil total nitrogen content,namely the soil total nitrogen contents in 5 towns and windy desert area were not statistically different in the 0-40 cm soil layer.According to the nutrient grading standard of the second national soil survey,the soil total nitrogen content in the survey area was in the deficiency grade.[Conclusions]The research will provide a scientific guidance for the healthy and sustainable development of vegetation in arid regions.
基金supported by the National Natural Science Foundation (40861026,40801001)Major project of the National Natural Science Foundation (91025024)+1 种基金Science and Technology Department Project of Qinghai Province(2010-Z-706,2011-Z-743)the Western Light Project of Chinese Academy of Sciences (2009-14)
文摘Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.
基金supported by National Natural Science Foundation of China(Grant Nos:31360200,31270742)the German Volkswagen Foundation within the framework of EcoCAR project(Az.:88497)
文摘Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.
基金funded by Western Doctoral Program of Chinese Academy of Sciences,the Innovation Project of Chinese Academy of Science (KZCX2-XB2-13)the National Natural Science Foundation of Xinjiang Uygur Autonomous Region (200821163), and Natural Science Foundation of China (40701098)
文摘The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.
基金supported by the National Natural Science Foundation of China(41401033,31370466,and 41271037)the China Postdoctoral Science Foundation(2014M560819)the National Key Research and Development Program of China(2016YFC0501002)
文摘Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability.
文摘Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </span><span style="font-family:Verdana;">the tree species composition, population structure, and providing evidence of anthropogenic disturbances in the riparian forest of Lake Barombi Kotto. The objectives were to determine the tree species composition and diversity in the riparian forest around Lake Barombi Kotto, to elucidate the forest structure and to document the anthropogenic disturbances in this forest. Five plots were laid within which </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">tree enumeration and measurement of dbh were carried out.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">Trees were identified using scientific identification keys in the Flora of W</span><span style="font-family:Verdana;">est Africa. Disturbance scores were given to each site by qualitatively assessing various disturbances. A total of 340 trees belonging to 70 plant species, 63 genera and 28 plant families were enumerated. Shannon-Wiener diversity varied across sites, with the highest value (H = 3.45) recorded in Tung and the lowest (H = 2.21) in Malenda. Population structure differed across sites,</span><span style="font-family:Verdana;"> the largest stand basal area of 43.78 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha was recorded in Bondokombo while the smallest (2.15 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha)</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">was recorded in the Sacred Island. </span><i><span style="font-family:Verdana;">Cecropia</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">peltata</span></i><span style="font-family:""><span style="font-family:Verdana;"> L., </span><i><span style="font-family:Verdana;">Pseudospondias</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">macrocarpa</span></i><i><span style="font-family:""> </span></i><span style="font-family:""><span style="font-family:Verdana;">Oliv. Pierre and </span><i><span style="font-family:Verdana;">Ceiba</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">pentandra</span></i><span style="font-family:Verdana;"> (L.) Gaertn had the largest basal areas across the different sites. Species rich families were Malvaceae (9 species), Fabaceae (9 species), Annonaceae</span><span style="font-family:""> </span><span style="font-family:Verdana;">(4 species), and Anacardiaceae (4). This study shows that, there is a high tree species diversity in the protected forest (Tung) but the other unprotected sites are highly disturbed by anthropogenic activities. There is need to develop and enhance existing management policies for this riparian forest, especially by replanting the cut trees and creating a protected riparian buffer to conserve its floristic diversity and ecological functions.
基金funded by the National Natural Science Foundation of China(31860134,U1703102,31700386).
文摘Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades,the mortality of the Euphrates poplar(Populus euphratica)along the Tarim River in Northwest China has increased.However,few studies have quantified the causes of mortality and regeneration in this azonal riparian forest type.Methods:The present study describes the annual hydrological response of tree mortality and regeneration in forest gaps.A total of 60 canopy gaps were investigated in six replicate grid plots(50m×50 m)and the annual runoff and water consumption data during the period of 1955–2016 were collected from hydrological stations in the middle reaches of the Tarim River.We compared the regeneration density of seedlings and saplings within the canopy gap areas(CGAs),undercanopy areas(UCAs),and uncovered riverbank areas(RBAs)through detailed field investigation.Results:Our study found that the mortality of young and middle-aged gap makers has increased remarkably over recent decades,particularly since the year 1996.The main results indicated that regional water scarcity was the primary limiting factor for long-term changes in tree mortality,as shown by a significant correlation between the diameter at breast height(DBH)of dead trees and the annual surface water.The average density(or regeneration rate)of seedlings and saplings was highest in the RBAs,intermediate in the CGAs,and lowest in the UCAs.Compared with the UCAs,the CGAs promote tree regeneration to some extent by providing favorable conditions for the survival and growth of seedlings and saplings,which would otherwise be suppressed in the understory.Furthermore,although the density of seedlings and saplings in the CGAs was not as high as in the RBAs,the survival rate was higher in the CGAs than in the RBAs.Conclusion:Forest canopy gaps in floodplain areas can play a decisive role in the long-term germination and regeneration of plant species.However,as a typical phreatophyte in this hyper-arid region,the ecosystem structure,functions and services of this fragile P.euphratica floodplain forests are threatened by a continuous decrease of water resources,due to excessive water use for agricultural irrigation,which has resulted in a severe reduction of intact poplar forests.Furthermore,the survival of seedlings and saplings is influenced by light availability and soil water at the regional scale.Our findings suggest that policymakers may need to reconsider the restoration and regeneration measures implemented in riparian P.euphratica forests to improve flood water efficiency and create canopy gaps.Our results provide with valuable reference information for the conservation and sustainable development of floodplain forest ecosystems.
文摘Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried out to examine effects of land use activities on riparian vegetation, soil and water quality along two major rivers (Chemosit and Kipsonoi) of South West Mau Forest (SWMF). Land use activities adjacent to these rivers and biodiversity disturbance on the riparian zone were identified and underpinned to changes on Total Nitrogen, Total Phosphorous, Potassium, Sulphur, Cadmium, Copper, Lead, Total Suspended Solids and soil Organic Carbon. Three sampling sites designated(upstream, midstream and downstream) were identified and established along each river as guided by existing land use activities represented by forest, tea plantation and mixed agricultural farming respectively. At each sampling site, a 200 m × 50 m section was systematically marked on each side of the river bank;the longest side being parallel to the river flow and divided into three belts transects each 20 m × 50 m, spaced 70 m apart. Six distinct land use activities (indigenous forest, food crop, tree and tea farming, livestock keeping and urban settlement) were identified as the major land use activities in SWMF. Plant species richness decreased and overall riparian disturbance increased from upstream (intact canopy with native vegetation) to mid-stream and downstream as epitomized by the structure, biodiversity disturbance resulting from extensive and intensive farming, intrusion of exotic species to livestock grazing and urban settlement. Variation among sampling sites in Total Suspended Solids, pH, Total Nitrogen, Phosphorus and Potassium were associated to different land use activities along the riparian zone. Total Nitrogen and water pH showed significant sensitivity to land use changes (p < 0.05). Put together these results indicate loss of biodiversity, riparian disturbance hence a need to adopt environmental-friendly land use planning and sustainable farming systems in SWMF.
基金Behbahan Khatam Al-Anbia University of Technology for its support during this study
文摘The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the distances from riverbanks were assessed. For this purpose, the riparian forest of the Maroon River, Iran was divided into three locations with a 200-meter wide zone in between. Thus, the locations studied were named Distance I(riverbank), Distance II(intermediate), and Distance III(farthest from riverbank). In each of these distances, 10 Tamarix arceuthoides and Populus euphratica of each species were randomly selected. At the same time, soil and root samples were collected from the rhizosphere of the tree species studied. Results indicated that totally 13 AMF species were observed in T. arceuthoides and 19 AMF species were recorded in P. euphratica rhizosphere belonging to 6 genera and 6 families. In these AMF species, Glomus segmentatum, G. geosporum, G. rubiforme, G. nanolumen, G. spinuliferum, Claroideoglomus drummondii, Gigaspora gigantea and Acaulospora paulinae appeared only in P. euphratica rhizosphere, while G. multiforum and Claroideoglomus claroideum were observed only in T. arceuthoides rhizosphere. Moreover, Distance II had the least AMF species both in T. arceuthoides and in P. euphratica rhizospheres, and also the least spore density and root colonization rate. Our results are important in that they provide a list of resistant AMF species that could be used in the conservation of biodiversity.
文摘Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This riverbank restoration work was implemented in the year 2010 and two onsite vegetation surveys, one shortly after the construction, and one in 2013. Besides that, the structures of reinforcement work, and its effectiveness were evaluated. By means of the vegetation survey, the applied species were examined for their ability to establish the riverbank in an environmentally sustainable way. Most notably, the species Calliandra brevipes Benth. (Fabaceae, Mimosoideae), Phyllanthus sellowianus Müller Arg. (Euphorbiaceae), Salix humboldtiana Willd. (Salicaceae), Bauhinia forficate Link (Leguminosae), Inga marginata Willd. (Mimosoideae) and Ateleia glazioveana Baill. (Leguminosae, Papilionoideae) showed a good growth development. The proportion of spontaneous vegetation increased significantly, with Pennisetum purpureum Schumach. becoming a dominating species. Resulting from that, the intervention can be assessed as functional and safe, but the strong increase of spontaneous vegetation is undesirable due to less flood resistance. The vegetated riprap could be the best to meet the expectations of the construction elements. Partly, the anchored willows showed as well a good growth development whereas the species used for the hedge brush layer could not develop as expected in large parts of the construction.
文摘Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple forces with varying degree of influences. This study examined the influence of land use and environmental gradient to the structure and composition of the riparian woody plants in northern Tanzania. A total of 270 plots were surveyed for woody plant species in the riparian ecosystems and later analysed to determine the influence of land use categories (homegarden, crop field, woodlot, open canopy forest, and closed canopy forest) and environmental variables (temperature, precipitation, elevation and slope) to the species richness, abundance, and stand parameters. Basal area was higher in woodlots, homegardens and crop fields than in the open and closed canopy forests;and as expected the reverse was true for the number of stocking density. Correlation among stand parameters with environmental variables varied significantly. Species richness and species abundance were negatively correlated to precipitation, temperature and elevation, while stocking density and basal area were positively correlated to precipitation. The study recommends continual retentions of trees on farm, further promoting of agroforestry interventions and sustainable utilization of woody plants in open and close canopy forests.
基金This study is supported by major projects of Knowledge Innovation Program Chinese Academy of Sciences ( No. KZCX2-SW-320-3) and Institute of Applied Ecology (a grant SCXZD010-01)CAS
文摘The restoration of the riparian vegetation disturbed by human activities is one of the hotspots of watershed ecology. Through interpreting the images of Remote Sensing in 1985 and 1999, the basic information of forest resources of Lushuihe Forest Bureau, which is a typical forest area of Changbai Mountain, was obtained with support of GIS. By dividing Land covers of Lushuihe area into 10 types (water body, residential land, stump land, farming land, wetland, mature conifer forest, midlife conifer forest, mature broadleaf forest, midlife broadleaf forest, and man-made young forest) and dividing the riparian zone into four buffers (in turn, 1000, 2000, 3000, 4000 m away from the river), the changes of riparian forest resources during 1985-1999 were analyzed. The results showed that the deforestation intension has obviously decreased and the whole environment has been evidently improved, but the riparian ecosystem was still flimsy. In buffer 1, 2, 3, the area of midlife conifer forest increased largely, but the areas of other types of land covers all decreased. Midlife conifer forest had a comparatively good status in the three buffers. In buffer 4, midlife conifer forest, mature conifer forest, and mature broadleaf forest formed a forest-age rank that is helpful to stabilize the forest ecosystem and exert its functions. Area percentage of wetland decreased in buffer 1, buffer 2, and buffer 3, even in buffer 4 in which forest ecosystem rehabilitated comparatively well, so protecting and rehabilitating wetland is a very difficult task.
基金This paper was supported by the Chinese Academy of Sciences (KZCX2-406) and National Natural Science Foundation of China (NSFC39970123) and Changbai Mountain Open Research Station.
文摘This study was conducted in Erdaobaihe River passing through the broadleaved and Korean pine forest located on the north slope of Changbai Mountain. In-stream large woody debris (LWD) in two segments of the river channel was investigated with base diameter, top diameter, length, and decay class. To study relationship between in-stream LWD and adjacent riparian forest, species of each log of LWD in segment 1 was identified, and the riparian forest was examined by setting a 32m?4 m quadrat consisting of twelve 8m?m small quadrats. The results showed that, in segment 1, in-stream LWD loading was 1.733 m3/100m or 10.83 m3hm-2, and in segment 2, it was 1.709m3/100m or 21.36 m3hm-2. In-stream LWD in decay class III and IV were accounted for a high proportion, which was different from that in the broadleaved and Korean pine forest, and the possible reason might be different decomposing velocities due to different decomposing conditions. Logs of LWD in stream and living trees in riparian forest declined as diameter increased, and it was in a reverse J-shaped distribution except logs of LWD in segment 1 in the first diameter class. Volumes of LWD in stream and living trees in riparian forest increased as diameter increased, and it was in a typical J-shaped distribution. Loading and species component of in-stream LWD were correlative to status of riparian forest to a certain extent, and there also existed difference. Comparing the correlation and difference was helpful to study on dynamic of the riparian forest.