期刊文献+
共找到1,599篇文章
< 1 2 80 >
每页显示 20 50 100
Response of Soil Organic Carbon and Its Aggregate Fractions to LongTerm Fertilization in Irrigated Desert Soil of China 被引量:3
1
作者 CHAI Yan-jun ZENG Xi-bai +4 位作者 E Sheng-zhe HUANG Tao CHE Zong-xian SU Shi-ming BAI Ling-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2758-2767,共10页
Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its wate... Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil. 展开更多
关键词 AGGREGATE irrigated desert soil long-term fertilization organic carbon
下载PDF
Chihuahuan Desert Soil Biota
2
作者 Walter G. Whitford Yosef Steinberger 《Open Journal of Ecology》 2021年第9期581-595,共15页
Deserts have traditionally been considered as a low moisture system where biological activity is triggered by unpredictable rainfall in time and space. Studies on desert ecosystems functions, processes, dynamics and d... Deserts have traditionally been considered as a low moisture system where biological activity is triggered by unpredictable rainfall in time and space. Studies on desert ecosystems functions, processes, dynamics and diversity of soil biota had been found to contribute to understanding of their role in primary production and management of soil ecosystems. As belowground biota is very diverse they are playing an important role in above as well below ground essential ecosystem processes e.g. primary production, decomposition, nutrient mineralization etc. The challenge is to use the emerging knowledge of soil biota diversity in understanding basic ecosystems function. 展开更多
关键词 desert soil Biota Plant Cover Ecophysiological Adaptation Plant soil Biota Interaction
下载PDF
Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland,China 被引量:28
3
作者 Hui AN GuoQi LI 《Journal of Arid Land》 SCIE CSCD 2015年第3期341-349,共9页
Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N ... Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N in plants and soils in the desert grassland of Ningxia,China,we examined the plant biomass,SOC(soil organic carbon),total soil N and stable isotope signatures of plants and soils from both the grazed and ungrazed sites.Significantly lower aboveground biomass,root biomass,litter biomass and vegetation coverage were found in the grazed site compared to the ungrazed site,with decreases of 42.0%,16.2%,59.4% and 30.0%,respectively.The effects of grazing on plant carbon,nitrogen,?15N and ?13C values were uniform among species.The levels of plant carbon and nitrogen in grasses were greater than those in the forbs(except for the carbon of Cynanchum komarovii and Euphorbia esula).Root 15 N and 13 C values increased with grazing,while the responses of root carbon and nitrogen to grazing showed no consistent patterns.Root 15 N and 13 C were increased by 79.0% and 22.4% in the grazed site compared to the ungrazed site,respectively.The values of SOC and total N were significantly lower in the grazed than in the ungrazed sites for all sampling depths(0–10 and 10–20 cm),and values of SOC and total N at the surface(0–10 cm) were lower than those in the deeper soils(10–20 cm).Soil ?15N values were not affected by grazing at any sampling depth,whereas soil ?13C values were significantly affected by grazing and increased by 19.3% and 8.6% in the soils at 0–10 and 10–20 cm,respectively.The soil ?13C values(–8.3‰ to –6.7‰) were higher than those for roots(–20.2‰ to –15.6‰) and plant tissues(–27.9‰ to –13.3‰).Our study suggests that grazing could greatly affect soil organic carbon and nitrogen in contrast to ungrazed grassland and that grazing appears to exert a negative effect on soil carbon and nitrogen in desert grassland. 展开更多
关键词 grazing 15N 13C soil properties desert grassland plant properties
下载PDF
Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions 被引量:10
4
作者 ZhaoYong SHI Bede MICKAN +1 位作者 Gu FENG YingLong CHEN 《Journal of Arid Land》 SCIE CSCD 2015年第3期414-420,共7页
Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(A... Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(AM fungi) are widely reported to improve the growth of desert ephemerals.The present study aimed to test the hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta,and AM fungal functions reduced with the improvement of soil water content.A pot experiment was carried out with three levels of soil water contents(4.5%,9.0%,and 15.8%(w/w)),and three AM inoculation treatments(Glomus mosseae,Glomus etunicatum and non-inoculation).The results indicate that mycorrhizal colonization rate decreased with the increase of soil water availability.Inoculation improved plant growth and N,P and K acquisition in both shoots and roots regardless water treatments.When comparing the two fungi,plants inoculated with G.mosseae performed better than those inoculated with G.etunicatum in terms of plant growth and nutrient acquisition.These results showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth and nutrient acquisition of desert ephemeral Plantago minuta. 展开更多
关键词 Plantago minuta soil water availability nutrient acquisition desert ephemeral Junggar Basin
下载PDF
Probabilistic modeling of soil moisture dynamics in a revegetated desert area 被引量:2
5
作者 Lei Huang ZhiShan Zhang YongLe Chen 《Research in Cold and Arid Regions》 CSCD 2013年第2期205-210,共6页
Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic s... Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic simulation of soil moisture has gradually become the focus of ecohydrology research. Based on continuous monitoring of soil moisture data from 2008 to 2011, and histor- ical precipitation data from 199l to 2011, combined with the Rodriguez-Iturbe soil moisture dynamic stochastic model, soil mois- ture dynamics and its probability density fimction in a revegetated desert area was simulated. Results show that annual soil mois- ture dynamic changes of the revegetated desert area during the growing season complied with rainfall distribution; soil moisture probability presents a single-peak distribution in the plant rhizosphere layer (0-60 cm). The peak width in the 20 cm topsoil was wider than in other soils, and the distribution presented the strong fluctuations and multiple aggregates. The peak widths of 40 cm and 60 cm soil moisture probability distribution were small, which are in accordance with simulated results of the Rodri- guez-lturbe model. This confrms that the Rodriguez-Imrbe model has good applicability and can well simulate the statistical characteristics of soil moisture in an arid revegetated desert area. 展开更多
关键词 revegetated desert area soil moisture Rodriguez-Iturbe model probability density functions
下载PDF
Diurnal dynamics of soil respiration and the influencing factors for three land-cover types in the hinterland of the Taklimakan Desert,China 被引量:7
6
作者 YANG Fan ALI Mamtimin +5 位作者 ZHENG Xinqian HE Qing YANG Xinghua HUO Wen LIANG Fengchao WANG Shaoming 《Journal of Arid Land》 SCIE CSCD 2017年第4期568-579,共12页
Knowledge of soil respiration and the influencing factors in desert ecosystems is essential to understanding carbon dynamics and responses of biotic and abiotic processes in soils to climate change. In this study, soi... Knowledge of soil respiration and the influencing factors in desert ecosystems is essential to understanding carbon dynamics and responses of biotic and abiotic processes in soils to climate change. In this study, soil respiration rate(R_s) for three land-cover types(shifting sandy land, sandy land with straw checkerboard barriers, and shelter forest land) in the hinterland of the Taklimakan Desert was measured in May 2015 using an automated soil CO_2 flux system. The effects of soil temperature(T_s) and soil water content(W_s) on R_s were also analyzed. The results showed that R_s values in shifting sandy land, sandy land with straw checkerboard barriers, and shelter forest land were all low and exhibited obvious diurnal fluctuations. The establishment of straw checkerboard barriers in sandy land had no significant effect on R_s, while the establishment of shelterbelts significantly increased R_s. Shifting sandy land and sandy land with straw checkerboard barriers were carbon sinks at night and early morning and were carbon sources in the daytime, while shelter forest land always acted as a carbon source during the whole day. The synergistic effect of T_s and W_s could better explain the diurnal dynamics in R_s than single factor. In shifting sandy land and sandy land with straw checkerboard barriers, W_s was identified as a limiting factor influencing the diurnal dynamics of R_s. Furthermore, a relatively strong hysteresis loop existed between R_s and T_s. In contrast, in shelter forest land, R_s was significantly influenced by T_s, and a relatively weaker hysteresis loop existed between R_s and W_s. 展开更多
关键词 soil respiration soil temperature soil water content hysteresis effect Taklimakan desert
下载PDF
Characteristics of the soil microbial population in forest land irrigated with saline water in the desert area 被引量:2
7
作者 Jin, ZhengZhong Lei, JiaQiang +3 位作者 Xu, XinWen Li, ShengYu Fan, JingLong Zhao, SiFeng 《Journal of Arid Land》 SCIE 2010年第2期107-115,共9页
关键词 desert shelter forest soil microbial population phospholipids fatty acid
下载PDF
Impact factors of soil wind erosion in the center of Taklimakan Desert 被引量:8
8
作者 Qing HE XingHua YANG +1 位作者 Ali Mamtimin ShiHao TANG 《Journal of Arid Land》 SCIE 2011年第1期9-14,共6页
The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an ex... The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an example and using comparative and quantitative methods, discussed the effects of climate, surface roughness (including vegetation cover) and surface soil properties on soil wind erosion. The results showed that the climate factor index C of annual wind erosion is 28.3, while the maximum of C is 13.9 in summer and it is only 0.7 in winter. The value of C has a very good exponential relationship with the wind speed. In Tazhong region, the surface roughness height is relatively small with a mean of 6.32 x 10 Sm, which is in favor of soil wind erosion. The wind erosion is further enhanced by its sandy soil types, soil particle size, lacking of vegetation and low soil moisture content. The present situation of soil wind erosion is the result of concurrent effects of climate, vegetation and surface soil properties. 展开更多
关键词 Taklimakan desert ROUGHNESS particle size soil moisture content soil wind erosion
下载PDF
Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China 被引量:4
9
作者 LI Yonggang ZHOU Xiaobing ZHANG Yuanming 《Journal of Arid Land》 SCIE CSCD 2019年第4期579-594,共16页
Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribut... Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribution with ecological stoichiometry may be useful in explaining their mechanisms of living in different microhabitats. In this study, Syntrichia caninervis, the dominant moss species of moss crusts in the Gurbantunggut Desert, China, was selected to examine the study of stoichiometric characteristics in three microhabitats(under living shrubs, under dead shrubs and in exposed ground). The stoichiometry and enzyme activity of rhizosphere soil were analyzed. The plant function in the above-ground and below-ground parts of S. caninervis is significantly different, so the stoichiometry of the above-ground and below-ground parts might also be different. Results showed that carbon(C), nitrogen(N) and phosphorus(P) contents in the below-ground parts of S. caninervis were significantly lower than those in the above-ground parts. The highest N and P contents of the two parts were found under living shrubs and the lowest under dead shrubs. The C contents of the two parts did not differ significantly among the three microhabitats. In contrast, the ratios of C:N and C:P in the below-ground parts were higher than those in the above-ground parts in all microhabitats, with significant differences in the microhabitats of exposed ground and under living shrubs. There was an increasing trend in soil organic carbon(SOC), soil total nitrogen(STN), soil available phosphorous(SAP), and C:P and N:P ratios from exposed ground to under living shrubs and to under dead shrubs. No significant differences were found in soil total phosphorous(STP) and soil available nitrogen(SAN), or in ratios of C:N and SAN:SAP. Higher soil urease(SUE) and soil nitrate reductase(SNR) activities were found in soil under dead shrubs, while higher soil sucrase(STC) and soil β-glucosidase(SBG) activities were respectively found in exposed ground and under living shrubs. Soil alkaline phosphatase(AKP) activity reached its lowest value under dead shrubs, and there was no significant difference between the microhabitats of exposed ground and under living shrubs. Results indicated that the photosynthesis-related C of S. caninervis remained stable under the three microhabitats while N and P were mediated by the microhabitats. The growth strategy of S. caninervis varied in different microhabitats because of the different energy cycles and nutrient balances. The changes of stoichiometry in soil were not mirrored in the moss. We conclude that microhabitat could change the growth strategy of moss and nutrients cycling of moss patches. 展开更多
关键词 MOSS STOICHIOMETRY Syntrichia caninervis MICROHABITATS soil STOICHIOMETRY soil enzyme Gurbantunggut desert
下载PDF
Effects of aeolian processes on nutrient loss from surface soils and their significance for sandy desertification in Mu Us Desert, China: a wind tunnel approach 被引量:5
10
作者 LANG Lili WANG Xunming +2 位作者 WANG Guangtao HUA Ting WANG Hongtao 《Journal of Arid Land》 SCIE CSCD 2015年第4期421-428,共8页
Mu Us Desert, a region with high aeolian activity, is at extremely high risk of sandy desertification. Using surface soil samples collected from Mu Us Desert of northern China, we evaluated the effects of aeolian proc... Mu Us Desert, a region with high aeolian activity, is at extremely high risk of sandy desertification. Using surface soil samples collected from Mu Us Desert of northern China, we evaluated the effects of aeolian processes on nutrient loss from surface soils by employing wind tunnel experiments. The experiments were conducted using free-stream wind velocities of 14, 16, 18 and 22 m/s. Our results showed that the fine particles (〈50 pm in diameter; 12.28% of all transported materials) carrying large nutrient Ioadings were exported outside the study area by ae- olian processes. After the erodible fine particles were transported away from the soil surfaces at low wind velocity (i.e. 14 m/s), the following relatively high wind velocity (i.e. 22 m/s) did not have any significant effect on nutrient export, because the coefficients of variation for soil organic matter, total phosphorus, total nitrogen and available potassium were usually 〈5%. Our experimental results confirmed that aeolian processes result in a large amount of nutrient export, and consequently increase the risk of sandy desertification in arid and semi-arid ecosystems. 展开更多
关键词 sandy desertification aeolian activity soil nutrients Mu Us desert
下载PDF
Spatio-Temporal Effect on Soil Respiration in Fine-Scale Patches in a Desert Ecosystem 被引量:5
11
作者 S. PEN-MOURATOV M. RAKHIMBAEV Y. STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2006年第1期1-9,共9页
在陆上的系统的土壤生物不均匀的在时空被散布,并且经常聚集了。在土壤环境的时间空间的补缀被认为为土壤生物多样性的维护关键,提供紧与资源划分交织的多样的微产地。“到帮助的一个规模单位”的决心理解生态的过程在最近的年里成为... 在陆上的系统的土壤生物不均匀的在时空被散布,并且经常聚集了。在土壤环境的时间空间的补缀被认为为土壤生物多样性的维护关键,提供紧与资源划分交织的多样的微产地。“到帮助的一个规模单位”的决心理解生态的过程在最近的年里成为了重要、很可争辩的问题之一。一个现场考古工作在一个荒芜的生态系统在北 Negev 荒芜的高地,在 biogeochemical 变量上决定好规模的风景补丁潮湿异质的影响的以色列和微生物引起的活动连接被执行。结果证明我们把有影响的性质归因于的土壤潮湿的时间空间的补缀,在土壤潮湿可获得性与减少被发现成为更多的异种遗传因子(从 8.2~0.4 g kg ? 1 )向热,干旱期,随着变异系数( CV )变化等于66.9%。有机物( OM )和全部的可溶的氮( TSN )的时间空间的分发被发现到一致地相对在整个湿季节(冬季和春天)被散布,随向干旱期的相对高的异质的增加(从0.25%~2.17%为 OM ,并且从 0~10.2 mg kg ? 1 为 TSN )与为 OM 和 TSN 的47.4%和99.7%的 CV 分别地。不同时间空间的风景模式为 Ca 被获得(CV =44.6%) , K (CV =34.4%) ,并且 Na (CV =92%) 在整个学习时期的离子。 CO2 进化( CV =48.6%)被发现具有更低的异质(在 2 和 39 g CO2-C g 之间变化? 1 干土 h ? 1 )在潮湿的季节,例如,冬季和春天,与Na+的异质和 TSN 和有机物的底层满足的高结合的呼吸的更低的价值,并且与在干旱期的更多的同质(在 1 和 50 g CO2-C g 之间变化? 1 干土 h ? 1 )。我们的结果阐明影响的荒芜的系统产地的异质和复杂性玷污生物区系活动。 展开更多
关键词 沙漠 生态系统 时空变化 土壤 呼吸作用
下载PDF
Soil Microbial Population in the Vicinity of the Bean Caper(Zygophyllum dumosum)Root Zone in a Desert System 被引量:1
12
作者 I.SHMUELI G.BARNESS Y.STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2007年第6期758-765,共8页
The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper(Zygophyllum dumosum)perennial desert shrub and ... The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper(Zygophyllum dumosum)perennial desert shrub and the inter-shrub sites.Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z.dumosum shrubs than from the inter-shrub sampling sites,with no differences between the two sampling layers(0-10 and 10-20 cm)throughout the study period.However,seasonal changes were observed due to autumn dew formation,which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient(qCO_2)revealed significant differences between the two sampling sites as well as between the two soil layers,elucidating the abiotic effect between the sites throughout the study period.The substrate availability index was found to significantly demonstrate the differences between the two sites,elucidating the significant contribution of Z.dumosum in food source availability and in moderating harsh abiotic components.The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment. 展开更多
关键词 沙漠 土壤 微生物种群 底部呼吸作用
下载PDF
Spatial heterogeneity of soil water content in the reversion process of desertification in arid areas 被引量:3
13
作者 QuanLin MA Fang CHENG +3 位作者 YouJun LIU FangLin Wang DeKuai ZHANG HuJia JIN 《Journal of Arid Land》 SCIE 2011年第4期268-277,共10页
关键词 Tengger desert reversion process of desertification soil water content sand-binding vegetation geostatistical analysis
下载PDF
Seasonal Patterns of Soil Respiration in Three Types of Communities along Grass-Desert Shrub Transition in Inner Mongolia, China 被引量:4
14
作者 金钊 齐玉春 +1 位作者 董云社 Manfred DOMROES 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期503-512,共10页
The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to Octo... The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture. 展开更多
关键词 soil respiration grass-desert shrub transition Stipa bungeana Artemisia ordosica Artemisiaordosica Cynanchum komarovii Ordos Plateau
下载PDF
Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert 被引量:14
15
作者 Zhi Shan ZHANG Yong Le CHEN +3 位作者 Bin Xing XU Lei HUANG Hui Juan TAN Xue Jun DONG 《Journal of Arid Land》 SCIE CSCD 2015年第2期205-215,共11页
Biological soil crusts (BSCs) play an important role in surface soil hydrology. Soils dominated with moss BSCs may have higher infiltration rates than those dominated with cyanobacteria or algal BSCs. However, it is... Biological soil crusts (BSCs) play an important role in surface soil hydrology. Soils dominated with moss BSCs may have higher infiltration rates than those dominated with cyanobacteria or algal BSCs. However, it is unnown whether improved infiltration in moss BSCs is accompanied by an increase in soil hydraulic conductivity or water retention capacity. We investigated this question in the Tengger Desert, where a 43-year-old revegetation program has promoted the formation of two distinct types of BSCs along topographic positions, i.e. the moss-dominated BSCs on the interdune land and windward slopes of the fixed sand dunes, and the al- gal-dominated BSCs on the crest and leeward slopes. Soil water retention capacity and hydraulic conductivity were measured using an indoor evaporation method and a field infiltration method. And the results were fitted to the van Genuchten-Mualem model. Unsaturated hydraulic conductivities under greater water pressure (〈-0.01 MPa) and water retention capacities in the entire pressure head range were higher for both crust types than for bare sand. However, saturated and unsaturated hydraulic conductivities in the near-saturation range (〉-0.01 MPa) showed decreasing trends from bare sand to moss crusts and to algal crusts. Our data suggested that topographic differentiation of BSCs significantly affected not only soil water retention and hydraulic conductivities, but also the overall hydrology of the fixed sand dunes at a landscape scale, as seen in the reduction and spatial variability in deep soil water storage. 展开更多
关键词 algal crusts hydraulic conductivity moss crusts soil water retention curve Tengger desert
下载PDF
Precipitation Pulses and Soil CO_2 Emission in Desert Shrubland of Artemisia ordosica on the Ordos Plateau of Inner Mongolia,China 被引量:8
16
作者 JIN Zhao DONG Yun-She +1 位作者 QI Yu-Chun M. DOMROES 《Pedosphere》 SCIE CAS CSCD 2009年第6期799-807,共9页
Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such water- limited ecosystems, pulsed water inputs directly control the belowground processes through a series o... Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such water- limited ecosystems, pulsed water inputs directly control the belowground processes through a series of soil drying and rewetting cycles. To investigate the effects of sporadic addition of water on soil CO 2 efflux, an artificial precipitation event (3 mm) was applied to a desert shrub ecosystem in the Mu Us Sand Land of the Ordos Plateau in China. Soil respiration rate increased 2.8-4.1 times immediately after adding water in the field, and then it returned to background level within 48 h. During the experiment, soil CO 2 production was between 2 047.0 and 7 383.0 mg m -2 . In the shrubland, soil respiration responses showed spatial variations, having stronger pulse effects beneath the shrubs than in the interplant spaces. The spatial variation of the soil respiration responses was closely related with the heterogeneity of soil substrate availability. Apart from precipitation, soil organic carbon and total nitrogen pool were also identified as determinants of soil CO2 loss in desert ecosystems. 展开更多
关键词 土壤CO2 二氧化碳排放 鄂尔多斯高原 降水 中国 内蒙古 生态系统功能 土壤呼吸速率
下载PDF
Culturable bacterial diversity in hypolithic and peripheral soils in the west of the Hexi Corridor desert and its influencing factors
17
作者 LiFang He ShiWeng Li +3 位作者 GaoSen Zhang XiuKun Wu BingLin Zhang Wei Zhang 《Research in Cold and Arid Regions》 CSCD 2020年第1期47-58,共12页
Microbes inhabiting the desert respond sensitively to environmental changes and may be an indicator for changes in the desert ecosystem.Hypolithic microbial communities in the desert play a vital role in ecosystem pro... Microbes inhabiting the desert respond sensitively to environmental changes and may be an indicator for changes in the desert ecosystem.Hypolithic microbial communities in the desert play a vital role in ecosystem processes such as soil formation and organic matter accumulation.This study investigated and compared the culturable bacterial community structure and diversity in hypolithic and peripheral soils,and the interaction between bacteria and environmental factors.The bacteria were isolated using four different kinds of media and identified by 16S rRNA gene-sequence analysis.The numbers of culturable bacteria in the hypolithic and peripheral soils ranged from 3.0×104 to 3.6×105 CFU/g and from 6.5×104 to 5.3×105 CFU/g,respectively,indicating that the bacteria number in peripheral soil was higher than that in hypolithic soil.A total of 98 species belonging to 34 genera were identified,among which Arthrobacter,Bacillus,and Streptomyces were found dominantly and widely distributed.The community of culturable bacteria had obvious sample specificity,and the diversity in hypolithic soil was higher than that in peripheral soil.On the regional scale,the distribution of culturable bacteria and the environmental factors showed regular changes.On the local scale,the high heterogeneity of the hypolithic environment determined the specificity of the number and species of culturable bacteria. 展开更多
关键词 Hexi Corridor desert hypolithic and peripheral soils culturable bacteria DIVERSITY
下载PDF
Spatial pattern of soil organic carbon in desert grasslands of the diluvial-alluvial plains of northern Qilian Mountains 被引量:11
18
作者 Rong YANG YongZhong SU +4 位作者 Min WANG Tao WANG Xiao YANG GuiPing FAN TianChang WU 《Journal of Arid Land》 SCIE CSCD 2014年第2期136-144,共9页
The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil wat... The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil water and nutrients, exhibits complex variability in arid desert grasslands; thus, it is essentially an impact factor for the distri- bution pattern of desert grasslands. In the present study, an investigation was conducted to estimate the spatial pattern of SOC content in desert grasslands and the association with environmental factors in the diluvial-alluvial plains of northern Qilian Mountains. The results showed that the mean values of SOC ranged from 2.76 to 5.80 g/kg in the soil profiles, and decreased with soil depths. The coefficients of variation (CV) of the SOC were high (ranging from 48.83% to 94.67%), which indicated a strong spatial variability. SOC in the desert grasslands of the study re- gion presented a regular spatial distribution, which increased gradually from the northwest to the southeast. The SOC distribution had a pattern linked to elevation, which may be related to the gradient of climate conditions. Soil type and plant community significantly affected the SOC. The SOC had a significant positive relationship with soil moisture (P〈0.05); whereas, it had a more significant negative relationship with the soil bulk density (BD) (P〈0.01). However, a number of the variations in the SOC could be explained not by the environmental factors involved in this analysis, but rather other factors (such as grazing activity and landscape). The results provide important references for soil carbon storage estimation in this study region. In addition, the SOC association with environmental variables also provides a basis for a sustainable use of the limited grassland resources in the diluvial-alluvial plains of north- ern Qilian Mountains. 展开更多
关键词 soil organic carbon spatial variability desert grasslands ELEVATION edaphic factor Qilian Mountains
下载PDF
Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China 被引量:5
19
作者 ZHANG Ke SU Yongzhong +1 位作者 WANG Ting LIU Tingna 《Journal of Arid Land》 SCIE CSCD 2016年第6期960-972,共13页
Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in san... Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0-9 years) and slower in the late stages (9-39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0-5 cm) showed larger variation scope than those in the deeper soil layers (5-20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long- term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation. 展开更多
关键词 Haloxylon ammodendron soil properties HERBACEOUS erodible fraction oasis-desert ecotone
下载PDF
Soil restoration research advances of artificial sand-binding vegetation ecosystem in the Tengger Desert, Northern China 被引量:3
20
作者 LiWen Yang LiChao Liu +1 位作者 DaYong Wang YongQing Zhang 《Research in Cold and Arid Regions》 2010年第4期279-287,共9页
Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou... Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas. 展开更多
关键词 Shapotou desert region artificial sand-binding vegetation soil restoration physic-chemical properties
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部