期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Slippery hydrogel with desiccation-tolerant‘skin’for high-precision additive manufacturing
1
作者 Desheng Liu Pan Jiang +6 位作者 Yue Hu Yaozhong Lu Yixian Wang Jiayu Wu Danli Hu Tao Wu Xiaolong Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期486-500,共15页
Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H... Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere. 展开更多
关键词 slippery hydrogel TREHALOSE desiccation tolerance vat photopolymerization 3D printing hydrogen bonding
下载PDF
Effect of high light and desiccation on photosystem Ⅱ in the seedlings and mature plants of tropical seagrass Enhalus acoroides during low tide
2
作者 Xingkai CHE Hu LI +1 位作者 Litao ZHANG Jianguo LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期241-250,共10页
During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The respons... During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The response of leaves of E.acoroides to high light and desiccation was compared for seedlings and mature plants.Results show that the resistance of seedling and mature leaves to high light was quite similar,but to desiccation was very different.Seedling leaves were more sensitive to desiccation than the mature plant leaves,but had better water retention.The damage of desiccation to seedling leaves was mainly caused by dehydration,whereas that to mature plant leaves was caused by hypersaline toxicity.The recovery rate of PSⅡ of seedling leaves was significantly slower than that of the mature plants after the stresses disappeared,which may at least partly contribute to seedling mortality in the wild.In addition,compared to high light,desiccation seriously inhibited the recovery rate of PSⅡ activities even if the leaves became fully rehydrated to their normal relative water content(RWC)in the following re-immersion.Desiccation inhibited the recovery rate of RC/CS_(M)(reaction center per cross section(at t=t_(Fm)))to decrease the production of assimilatory power,which maybe the cause of the slower PSⅡ recovery in desiccation treatments.This study demonstrates that desiccation particularly coupling with high light have a very negative ef fect on the PSⅡ of E.acoroides during low tide and the sensitivity of seedlings and mature plants to desiccation is significantly different,which have important reference significance to choose an appropriate transplanting depth where seedlings and mature plants of E.acoroides not only receive sufficient light for growth,but also that minimize desiccation stress during low tide. 展开更多
关键词 Enhalus acoroides high light desiccation photosystemⅡ
下载PDF
Electron paramagnetic resonance study of amphiphiles partitioning behavior in desiccation-tolerant moss during dehydration 被引量:3
3
作者 Shu Jun Xu Wei Hong Chen +2 位作者 Ying Wen Chen Cui Fang Wang Yan Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第7期865-868,共4页
Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of am... Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses. 展开更多
关键词 Plasma membrane permeability Amphiphiles partition desiccation tolerance Electron paramagnetic resonance Tortula desertorum broth. MOSSES
下载PDF
Rates of oxygen consumption and tolerance of hypoxia and desiccation in Chinese black sleeper(Bostrichthys sinensis)and mudskipper(Boleophthalmus pectinirostris)embryos 被引量:3
4
作者 CHEN Shixi HONG Wanshu +2 位作者 ZHANG Qiyong WU Renxie WANG Qiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第4期91-98,共8页
The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper ( Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of ... The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper ( Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of oxygen consumption of the Chinese black sleeper embryos was similar to that of the mudskipper ones. The lowest rates of oxygen consumption [ ( 1.65 ±0. 66) nmol/ (ind. ·h) ] of the Chinese black sleeper embryos 16 h after fertilization and the lowest rates of oxygen consumption [ (0.79± 0.08 )nmolf( ind. · h) ] of the mudskipper embryos 6 h after fertilization were recorded, respectively. Then the rates of oxygen consumption of these two species embryos increased gradually until hatching [ (8.26 ± 1.70 ) nmolf( ind.· h) in the Chinese black sleeper, (2.69 ± 0.23 )nmolf( ind. · h) in mudskipper]. After exposure to hypoxia water (0.16 mg/dm^3), bradycardia of the embryos occurred in both the Chinese black sleeper and the mudskipper. However, the Chinese black sleeper embryos survived approximately 45 min longer than the mudskipper ones. After exposure to desiccation at a relative humidity of 58%, bradycardia of the embryos was observed in both the Chinese black sleeper and the mudskipper, and the Chinese black sleeper embryos lived approximately 9 min longer than the mudskipper ones. 展开更多
关键词 Chinese black sleeper (Bostrichthys sinensis) mudskipper (Boleophthalmus pectinirostris) EMBRYO oxygen consumption rate hypoxia tolerance desiccation tolerance
下载PDF
Desiccation tolerance in bryophytes: the rehydration proteomes of Bryum argenteum provide insights into the resuscitation mechanism 被引量:2
5
作者 GAO Bei ZHANG Daoyuan +6 位作者 LI Xiaoshuang YANG Honglan LIANG Yuqing CHEN Moxian ZHANG Yuanming ZHANG Jianhua Andrew WOOD 《Journal of Arid Land》 SCIE CSCD 2018年第1期152-167,共16页
Bryum argenteum Hedw. is a desiccation tolerant bryophyte and belongs to one of the most important components of the biological soil crusts (BSCs) found in the deserts of Central Asia. Limited information is availab... Bryum argenteum Hedw. is a desiccation tolerant bryophyte and belongs to one of the most important components of the biological soil crusts (BSCs) found in the deserts of Central Asia. Limited information is available on rehydration-responsive proteins in desiccation tolerant plants. As a complement to our previous research analyzing the rehydration transcriptome, we present a parallel quantitative proteomic effort to study rehydration-responsive proteins. Bryophyte gametophores were desiccated (Dry) and rehydrated for 2 h (R2) and 24 h (R24). Proteins from Dry, R2 and R24 gametophores were labeled by isobaric tags for relative and absolute quantitation (iTRAQ) to determine the relative abundance of rehydration-responsive proteins. A total of 5503 non-redundant protein sequences were identified and 4772 (86.7%) protein sequences were annotated using Gene Ontology (GO) terms and Pfam classifications. Upon rehydration 239 proteins were elevated and 461 proteins were reduced as compared to the desiccated protein sample. Differentially up-regulated proteins were classified into a number of categories including reactive oxygen species scavenging enzymes, detoxifying enzymes, Late Embryogenesis Abundant (LEA) proteins, heat shock proteins, proteasome components and proteases, and photosynthesis and translation related proteins. Furthermore, the results of the correlation between transcriptome and proteome revealed the discordant changes in the expression between protein and mRNA. 展开更多
关键词 desiccation tolerance B*Tum Physcomitrellapatens PROTEOME ITRAQ REHYDRATION
下载PDF
Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay 被引量:3
6
作者 Jun He Yu Wang +1 位作者 Yong Li Xiao-chen Ruan 《Water Science and Engineering》 EI CAS CSCD 2015年第2期151-157,共7页
Both cracks in clay liner and the complex composition of landfill leachate might have effects on the hydraulic conductivity of a compacted clay liner. In this study, the hydraulic conductivities of natural clay and be... Both cracks in clay liner and the complex composition of landfill leachate might have effects on the hydraulic conductivity of a compacted clay liner. In this study, the hydraulic conductivities of natural clay and bentonite-modified clay with and without desiccation cracks were measured, respectively, using three types of liquids as permeating liquid: 2 500 mg/L acetic acid solution, 0.5 mol/L CaCl2 solution, and tap water. When tap water was adopted as the permeating liquid, desiccation cracks resulted in increases in the average value of hydraulic conductivity: a 25-fold increase for the natural clay and a 5.7-fold increase for the bentonite-modified clay. It was also found out that the strong selfhealing capability of bentonite helped to reduce the adverse impact of cracks on hydraulic performance. In contrast to tap water, simulated leachates(acetic acid and CaCl2 solutions) show no adverse effect on the hydraulic conductivities of natural and bentonite-modified clays. It is concluded that desiccation cracks and bentonite have more significant effects on hydraulic performance than simulated leachates. 展开更多
关键词 Natural clay Bentonite-modified clay Hydraulic conductivity Solution desiccation crack
下载PDF
Influence of Desiccation Time on Survival and Regeneration of Embryonic Axes of Groundnut (<i>Arachis hypogaea</i>L.) Immersed in Liquid Nitrogen 被引量:1
7
作者 M. M. Abdulmalik I. S. Usman +1 位作者 J. D. Olarewaju D. A. Aba 《American Journal of Plant Sciences》 2013年第9期1725-1730,共6页
Cryopreservation, the storage of biological materials in liquid nitrogen (LN), is a useful method for long term conservation of plant germplasm. This study was carried out with the objective of establishing an efficie... Cryopreservation, the storage of biological materials in liquid nitrogen (LN), is a useful method for long term conservation of plant germplasm. This study was carried out with the objective of establishing an efficient desiccation technique for successful cryopreservation and recovery of embryonic axes of groundnut. Embryonic axes of four groundnut (Arachis hypogaea L.) genotypes were evaluated. The excised embryonic axes were dehydrated by air current of a laminar air flow cabinet for different duration (0, 1, 2, 3, 4 & 5 hrs) before being plunged in LN (-196℃) and held for 1 hr. Samples were thawed in water bath at 40℃?for 2 min, thereafter cultured on MS medium supplemented with 15 mg/L BAP for recovery. Highest survival (96.67%-100%) and shoot formation (91.67%-96.67%) were obtained at an average moisture content of 17% after 4-5 hr desiccation. Among the genotypes evaluated, Samnut 22 and Samnut 23 recorded the highest survival and shoot formation. This technique therefore appears promising for cryopreservation of groundnut germplasm. 展开更多
关键词 CRYOPRESERVATION GROUNDNUT EMBRYONIC Axes desiccation
下载PDF
Desiccation versus Re-Flooding: Heavy Metals Mobilization—Part 1 被引量:1
8
作者 Sama Sameer Al-Maarofi Abdul Zahra Abdul Rasul Alhello +2 位作者 Nadia Al-Mudaffar Fawzi Ali Abdul Zahra Douabul Hamid Talib Al-Saad 《Journal of Environmental Protection》 2013年第8期27-36,共10页
From the restoration point of view, heavy metals distribution and seasonal variation were studied in the re-flooded marshes of the Mesopotamia, southern Iraq. As part of the ecological recovery assessment of these new... From the restoration point of view, heavy metals distribution and seasonal variation were studied in the re-flooded marshes of the Mesopotamia, southern Iraq. As part of the ecological recovery assessment of these newly inundated marshes, it is important to investigate the extend impact of 13 years of desiccation after five years of inundation on the heavy metals mobilization from the marshland downstream into the Shatt Al-Arab River and examine whether these marshlands retain their role of acting as sink of metals. The result shows significant differences between the re-flooded marshes versus the reference marsh, which indicates that desiccation cased changes in environmental variables and divided the one homogeneous system of the Mesopotamia into separated systems. In addition, the special distribution of heavy metals show that Al-Hawizeh and Al-Hammar marshlands were efficient for metals reduction, especially for Ni, while the Central marshland has the major contribution as source to metals. As a conclusion, the recovery potential of three marshlands is strongly controlled by the hydrological status of the marshland and the degree of the desiccation impact. The environmental status of the semidried marshes, Al-Souda north and Um Al-Niaaj, as well as the completely Abu Zarag dried marsh are exhibiting a positive recovery degree than the other monitored marshes in the Mesopotamia in comparison to the reference marsh. 展开更多
关键词 desiccation HEAVY Metals Mesopotamian Marshlands Re-Flooding RESTORATION
下载PDF
Ultrastructural analysis of the loss of desiccation tolerance in germinating Eremanthus erythropappus seeds
9
作者 Rayana S.Martins Anderson C.José +1 位作者 José Marcio R.Faria Wilson V.S.Pereira 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第4期1331-1336,共6页
Eremanthus erythropappus(DC.)MacLeish is an important forest species native to the Brazilian savanna biome,an environment with well-defined rainy and dry seasons.Its seeds are desiccation tolerant,non-dormant and disp... Eremanthus erythropappus(DC.)MacLeish is an important forest species native to the Brazilian savanna biome,an environment with well-defined rainy and dry seasons.Its seeds are desiccation tolerant,non-dormant and dispersed at the end of dry season.This exposes them to the first sporadic rains that can trigger germination but the subsequent dry days can compromise survival of the newly germinated seed.This study evaluates if the damages caused by drying of germinating E.erythropappus seeds,at the stage when they have lost desiccation tolerance,are lethal.The percentage of normal seedlings was evaluated when seeds with different imbibition times were dried to their initial water content and then pre-humidified and rehydrated.Desiccation tolerance was fully lost after 0.5 mm of hypocotyl-radicle protrusion(approximately 72 h)when the radicle had root hairs,a possible indicator of sensitivity to desiccation.Disintegration of cell contents and ultrastructural damage to the seeds subjected to drying were observed by electron scanning microscope.Root hairs disappeared after drying,reappearing after pre-humidification,possibly an attempt to increase the surface area of the radicle for water uptake.However,the hypocotylradicle axis became darkened,probably by antioxidant system failure,causing seed death. 展开更多
关键词 Candeia DRYING desiccation TOLERANT SEEDS REHYDRATION SCANNING electron microscopy
下载PDF
Effect of Desiccation of Marine Environment on Beam Structure
10
作者 陈达 王娜 +1 位作者 侯利军 廖迎娣 《China Ocean Engineering》 SCIE EI CSCD 2013年第1期65-72,共8页
This paper presents the study on the effect of desiccation for different part of offshore structure corresponding to the water level. A coupled elastoplastic damage model is proposed to describe the mechanical behavio... This paper presents the study on the effect of desiccation for different part of offshore structure corresponding to the water level. A coupled elastoplastic damage model is proposed to describe the mechanical behavior of cement-based materials under external loading and desiccation, in which both the plastic and damage behaviors under multi-axial stress are considered in composition with the desiccation effect. The comparison between numerical simulation and experimental data indicates that the proposed model can well predict the mechanical characteristics of cement-based materials with different saturations. In addition, a series of small beams subjected to desiccation are further analyzed to reveal the response of structure in the drying process. 展开更多
关键词 desiccation CONCRETE DAMAGE BEAM MARINE
下载PDF
Effect of desiccation on regeneration frequency of green plantlets and some biochemical properties of calli of wild rice
11
作者 TAN Guangxuan, Dept of Biology, Zhoukou Teacher’s College, Zhoukou 466000 SHU Lihui and HE Guangcun, College of Life Sci, Wuhan Univ, Wuhan 430072, China 《Chinese Rice Research Newsletter》 1998年第4期6-7,共2页
Wild rice is an important resource of usefulgenes to rice breeders. However, low regener-ation frequency is an obstacle to use the valu-able genes. We used desiccation to improve theregeneration frequency and studied ... Wild rice is an important resource of usefulgenes to rice breeders. However, low regener-ation frequency is an obstacle to use the valu-able genes. We used desiccation to improve theregeneration frequency and studied the bio-chemical changes of calli of wild rice after des-iccation.Materials used in this experiment werewild species O. rufipogon, O. meyeriana, O.alta, and O. brachyantha. Young panicles(0.1-0. 5 cm in length of the inflorescence) 展开更多
关键词 Effect of desiccation on regeneration frequency of green plantlets and some biochemical properties of calli of wild rice WSP
下载PDF
Protective mechanism of desiccation tolerance in Reaumuria soongorica: Leaf abscission and sucrose accumulation in the stem 被引量:27
12
作者 LIU YuBing1,2, ZHANG TengGuo1, LI XingRong2 & WANG Gang1 1 School of Life Sciences, Lanzhou University, Lanzhou 730000, China 2 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China 《Science China(Life Sciences)》 SCIE CAS 2007年第1期15-21,共7页
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mecha... Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was char-acterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then de-clined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dis-sipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than –21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon re-watering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation. 展开更多
关键词 Reaumuria soongorica desiccation PHOTOSYNTHESIS SUCROSE water use efficiency LEAF ABSCISSION
原文传递
Effect of biochar type on infiltration,water retention and desiccation crack potential of a silty sand 被引量:1
13
作者 Rojimul Hussain Sanandam Bordoloi +4 位作者 Piyush gupta Ankit Garg K.Ravi S.Sreedeep Lingaraj Sahoo 《Biochar》 2020年第4期465-478,共14页
Biochar is a carbon-rich material obtained after thermochemical conversion of biomass under no oxygen environment.The effect of biochar amendment on soil properties,such as water retention,infiltration and desiccation... Biochar is a carbon-rich material obtained after thermochemical conversion of biomass under no oxygen environment.The effect of biochar amendment on soil properties,such as water retention,infiltration and desiccation crack potential was studied in the recent years.However,the effect of biochar or feedstock type on these properties is not explicit.This study investigates the effect of two different(in terms of feedstock)types of biochar on the water retention,infiltration and desiccation crack-ing behavior of compacted silty sand.Water retention characteristics,infiltration rate and the progression of desiccation cracks were measured after compacting soil amended with 5-10%(w/w)biochar produced from water hyacinth(WHB)and mesquite.Measurements were also taken for an unpyrolyzed material coir pith(CP,sourced from coconut husk)-amended soil for comparing the results of biochar-amended soil.The results show that the amendment of 5%to 10%biochar increased the maximum water holding capacity(θs),air entry value(AEV)and water content at 1500 kPa(θ1500)of the soil,whereas decreased the infiltration rate and peak crack intensity factor(CIF)of the soil.Moreover,the application of CP increased the infiltration rate.The amendment of WHB showed the highest increment in AEV andθ1500 and the highest decrement in infiltration rate and CIF compared to the other amendments.Based on the results,it is advisable to use the WHB-amended soil in bioengineered structures that could promote the growth of vegetation by higher water retention and could reduce the potential of leachate formation by decreasing water infiltration and desiccation crack potential. 展开更多
关键词 BIOCHAR Water hyacinth SWRC INFILTRATION desiccation cracks
原文传递
DESICCATION OF THE MIDDLE ORDOVICIAN EPEIRIC SEA IN NORTH CHINA
14
作者 王兆升 《Chinese Science Bulletin》 SCIE EI CAS 1991年第21期1811-1815,共5页
Ⅰ. INTRODUCTION The Middle Ordovician evaporites in North China have been commonly considered as distributing only in the central part of the epeiric sea. Their genesis has raised much controversy among sedimentologi... Ⅰ. INTRODUCTION The Middle Ordovician evaporites in North China have been commonly considered as distributing only in the central part of the epeiric sea. Their genesis has raised much controversy among sedimentologists. The purpose of this study is to simulate the distribution 展开更多
关键词 MIDDLE ORDOVICIAN EVAPORITE desiccation
原文传递
Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides
15
作者 Jian-Wen Qiao Yong-Liang Fan +5 位作者 Bing-Jin Wu Tian-Tian Bai Ying-Hao Wang Zhan-Feng Zhang Dun Wang Tong-Xian Liu 《Insect Science》 SCIE CAS CSCD 2022年第4期1105-1119,共15页
Nicotinamide adenine dinucleotide phosphate(NADPH)-cytochrome P450 reductase(CPR)is involved in the metabolism of endogenous and exogenous substances,and detoxification of insecticides.RNA interference(RNAi)of CPR in ... Nicotinamide adenine dinucleotide phosphate(NADPH)-cytochrome P450 reductase(CPR)is involved in the metabolism of endogenous and exogenous substances,and detoxification of insecticides.RNA interference(RNAi)of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides.However,the CPR of Acyrthosiphon pisum has not been characterized,and its function is still not understood.In this study,we investigated the biochemical functions of A.pisum CPR(ApCPR).ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage,and in the gut,head,and abdominal cuticle.After optimizing the dose and silencing duration of RNAi for downregulating ApCPR,we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents,and of cuticular waxy coatings.Deficiency in cuticular hydrocarbons(CHCs)decreased the survival rate of A.pisum under desiccation stress and increased its susceptibility to contact insecticides.Moreover,desiccation stress induced a significant increase in ApCPR mRNA levels.We further confirmed that ApCPR participates in CHC production.These results indicate that ApCPR modulates CHC production,desiccation tolerance,and insecticide susceptibility in A.pisum,and presents a novel target for pest control. 展开更多
关键词 Acyrthosiphon pisum desiccation tolerance lhydrocarbon insecticide sus-ceptibility NADPH-cytochrome P450 reductase
原文传递
Dehydration Kinetics of Embryonic Axes from Desiccation-sensitive Seeds:An Assessment of Descriptive Models
16
作者 Tobias M. Ntuli Norman W. Pammenter 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第11期1002-1007,共6页
The response of desiccation-sensitive plant tissues to dehydration is significantly affected by dehydration conditions, particularly the rate of drying. Consequently it is important to be able to quantify drying rate.... The response of desiccation-sensitive plant tissues to dehydration is significantly affected by dehydration conditions, particularly the rate of drying. Consequently it is important to be able to quantify drying rate. The aim of the study was to assess two models that have been proposed to describe drying kinetics, and thus to provide a quantification of non-linear drying rates, of embryonic axes excised from recalcitrant seeds. These models are an exponential drying time course, and a modified inverse relationship, respectively. For the six species investigated here the inverse function was generally found to fit drying data better than the exponential function under both rapid and slow drying conditions, and so is recommended. The rate of drying, under the conditions used here, was determined by axis size and possibly the nature of the axis outer coverings, rather than the water activity difference between the tissue and surrounding air. 展开更多
关键词 desiccation drying rate recalcitrant seeds.
原文传递
Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation,high salinity,and high mannitol concentration
17
作者 Guoying Du Xiaojiao Li +3 位作者 Junhao Wang Shuai Che Xuefeng Zhong Yunxiang Mao 《Marine Life Science & Technology》 SCIE CAS 2022年第1期10-17,共8页
Macroalgae that inhabit intertidal zones are exposed to the air for several hours during low tide and must endure desiccation and high variations in temperature, light intensity, and salinity. Pyropia yezoensis (Rhodo... Macroalgae that inhabit intertidal zones are exposed to the air for several hours during low tide and must endure desiccation and high variations in temperature, light intensity, and salinity. Pyropia yezoensis (Rhodophyta, Bangiales), a typical intertidal red macroalga that is commercially cultivated in the northwestern Pacific Ocean, was investigated under different dehydration stresses of desiccation, high salinity, and high mannitol concentration. Using chlorophyll fluorescence imaging, photosynthetic activities of P. yezoensis thalli were analyzed using six parameters derived from quenching curves and rapid light curves. A distinct discrepancy was revealed in photosynthetic responses to different dehydration stresses. Dehydration caused by exposure to air resulted in rapid decreases in photosynthetic activities, which were always lower than two other stresses at the same water loss (WL) level. High salinity only reduced photosynthesis significantly at its maximum WL of 40% but maintained a relatively stable maximum quantum yield of photosystem II (PSII) (Fv/Fm). High mannitol concentration induced maximum WL of 20% for a longer time (60 min) than the other two treatments and caused no adverse influences on the six parameters at different WL except for a significant decrease in non-photochemical quenching (NPQ) at 20% WL. Illustrated by chlorophyll fluorescence images, severe spatial heterogeneities were induced by desiccation with lower values in the upper parts than the middle or basal parts of the thalli. The NPQ and rETRmax (maximum relative electron transport rate) demonstrated clear distinctions for evaluating photosynthetic responses, indicating their sensitivity and applicability. The findings of this study indicated that the natural dehydration of exposure to air results in stronger and more heterogeneous effects than those of high salinity or high mannitol concentration. 展开更多
关键词 Dehydration stress desiccation High salinity High mannitol concentration Photosynthetic activities Pyropia yezoensis
原文传递
The influence of desiccation on the recovery process of nitrogenase activity in restored biological soil crusts
18
作者 Jiaoli Zheng Shuangshuang Li +1 位作者 Chengrong Peng Dunhai Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2017年第11期1283-1285,共3页
Dear Editor,Biological soil crusts(BSCs),a layered structure formed by associations of soil organisms and topsoil,dominate arid and semiarid areas and serve important ecological functions in these areas(Eldridge and G... Dear Editor,Biological soil crusts(BSCs),a layered structure formed by associations of soil organisms and topsoil,dominate arid and semiarid areas and serve important ecological functions in these areas(Eldridge and Greene,1994).Nitrogen fixation by BSCs is the main source of N in arid and semi-arid ecosystems.Desiccation is the most notable factor that influences BSCs,which recover physiological activity only after moistening.By influencing the amount of carbohydrates, 展开更多
关键词 The influence of desiccation on the recovery process of nitrogenase activity in restored biological soil crusts FIGURE
原文传递
Factors Predisposing and Triggering the Phenomenon of Shrinkage-Swelling of Clay Soils in the Urban Center of Diamniadio
19
作者 Khadim Faye Fatou Samb +1 位作者 Pape Sanou Faye Yves Berthaud 《Geomaterials》 CAS 2023年第2期23-34,共12页
The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting ... The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies. 展开更多
关键词 Swelling Clays Expansive Soil Shrinkage-Swelling desiccation Cracks Diamniadio
下载PDF
Simulation of Crack Pattern Formation Due to Shrinkage in a Drying Material
20
作者 Takuya Uehara 《Open Journal of Modelling and Simulation》 2023年第1期1-13,共13页
Crack patterns observed in nature have attracted the interest of researchers in various fields, and the mechanism of the pattern formation has been investigated. However, the phenomenon is very complicated, and many f... Crack patterns observed in nature have attracted the interest of researchers in various fields, and the mechanism of the pattern formation has been investigated. However, the phenomenon is very complicated, and many factors affect the process. Therefore, we are motivated to construct a general simulation code with a simple algorithm. In this study, crack pattern formation due to shrinkage caused by the drying of a wet material was simulated. The process was simplified as follows: tensile force is generated in the model, and a crack is generated when the tension exceeds a critical value. The tensile forces in the x and y directions are independently evaluated. A crack propagates perpendicular to the tension until it reaches another crack or a boundary. Based on this modeling, simulations with a two-dimensional square domain were performed. Consequently, a cross-divided pattern was generated. Assuming zigzag crack propagation, more realistic patterns were obtained. The effects of the boundary and domain size were also considered, and various characteristic patterns were obtained. Furthermore, the orientation dependency was simulated, and 45&#730 declined patterns and rectangularly divided patterns were generated. The model presented in this study is very simplified and is expected to be applicable to various objects. 展开更多
关键词 desiccation Crack Tensile Force Crack Initiation Crack Propagation Pattern Formation Computer Simulation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部