We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method ha...A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.展开更多
Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated...Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.展开更多
To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ...To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach...Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach to optimize its performance.However,there is a lack of systematic theoretical studies to reveal the quantitative relationships at the electronic level.Here,we develop a multi-level screening methodology to search for highly stable and active dopants for CoP catalysts.The density functional theory(DFT)calculations and symbolic regression(SR)were performed to investigate the relationship between the adsorption free energy(ΔG_(H^(*)))and 10 electronic parameters.The mathematic formulas derived from SR indicate that the difference of work function(ΔΦ)between doped metal and the acceptor plays the most important role in regulatingΔG_(H^(*)),followed by the d-band center(d-BC)of doped system.The descriptor of HER can be expressed asΔG_(H^(*))=1.59×√|0.188ΔΦ+d BC+0.120|1/2-0.166 with a high determination coefficient(R^(2)=0.807).Consistent with the theoretical prediction,experimental results show that the Al-CoP delivers superior electrocatalytic HER activity with a low overpotential of75 m V to drive a current density of 10 mA cm^(-2),while the overpotentials for undoped CoP,Mo-CoP,and V-CoP are 206,134,and 83 m V,respectively.The current work proves that theΔΦis the most significant regulatory parameter ofΔG_(H^(*))for ion-doped electrocatalysts.This finding can drive the discovery of high-performance ion-doped electrocatalysts,which is crucial for electrocatalytic water splitting.展开更多
Mixed-variable problems are inevitable in engineering. However, few researches pay attention to discrete variables. This paper proposed a mixed-variable experimental design method (ODCD): first, the design variables w...Mixed-variable problems are inevitable in engineering. However, few researches pay attention to discrete variables. This paper proposed a mixed-variable experimental design method (ODCD): first, the design variables were divided into discrete variables and continuous variables;then, the DVD method was employed for handling discrete variables, the LHD method was applied for continuous variables, and finally, a Columnwise-Pairwise Algorithm was used for the overall optimization of the design matrix. Experimental results demonstrated that the ODCD method outperforms in terms of the sample space coverage performance.展开更多
Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.Thi...Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.This article first analyzes the characteristics of digital visualization and its advantages in the design of urban public building spaces,including aspects such as visualizing three-dimensional expression,rational analysis of building space,Virtual Reality Experience,and integration of design and construction processes.Subsequently,by introducing digital design methods such as parametric design,algorithmic generation,nonlinear design,and artificial intelligence-assisted design,it explores the methods and implementation approaches of digital visualization in the design of public building spaces.The aim is to offer insights and references for the deeper integration of digital technology into architectural design practices.展开更多
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainti...The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.展开更多
Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have ...Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.展开更多
To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooli...To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooling technique.The design calculation of the porous ceramics tube type dew point indirect evaporative cooler are carried out from such aspects as the volumes and status parameters of the primary and secondary air,the cooler structure,the heat transfer of the solid porous ceramic tubes and the resistance of the cooler.The calculation results show that the design is reasonable.Finally,based on the design calculation,the porous ceramics tube type dew point indirect evaporative cooler is successfully manufactured.展开更多
Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement...Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done t...In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.展开更多
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
基金supported by the Natural Science Foundation of China under Grant U22A20214 and Grant 51837010。
文摘A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.
文摘Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.
基金Beijing Nova Program under Grant No.2022036National Key Research and Development Program under Grant No.2019YFC1521000。
文摘To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
基金Financial support from the National Natural Science Foundation of China(21676216)the Special project of Shaanxi Provincial Education Department(20JC034)+1 种基金GHfund B(202202022563)Hefei Advanced Computing Center。
文摘Rational design of high-performance electrocatalysts for hydrogen evolution reaction(HER)is vital for future renewable energy systems.The incorporation of foreign metal ions into catalysts can be an effective approach to optimize its performance.However,there is a lack of systematic theoretical studies to reveal the quantitative relationships at the electronic level.Here,we develop a multi-level screening methodology to search for highly stable and active dopants for CoP catalysts.The density functional theory(DFT)calculations and symbolic regression(SR)were performed to investigate the relationship between the adsorption free energy(ΔG_(H^(*)))and 10 electronic parameters.The mathematic formulas derived from SR indicate that the difference of work function(ΔΦ)between doped metal and the acceptor plays the most important role in regulatingΔG_(H^(*)),followed by the d-band center(d-BC)of doped system.The descriptor of HER can be expressed asΔG_(H^(*))=1.59×√|0.188ΔΦ+d BC+0.120|1/2-0.166 with a high determination coefficient(R^(2)=0.807).Consistent with the theoretical prediction,experimental results show that the Al-CoP delivers superior electrocatalytic HER activity with a low overpotential of75 m V to drive a current density of 10 mA cm^(-2),while the overpotentials for undoped CoP,Mo-CoP,and V-CoP are 206,134,and 83 m V,respectively.The current work proves that theΔΦis the most significant regulatory parameter ofΔG_(H^(*))for ion-doped electrocatalysts.This finding can drive the discovery of high-performance ion-doped electrocatalysts,which is crucial for electrocatalytic water splitting.
文摘Mixed-variable problems are inevitable in engineering. However, few researches pay attention to discrete variables. This paper proposed a mixed-variable experimental design method (ODCD): first, the design variables were divided into discrete variables and continuous variables;then, the DVD method was employed for handling discrete variables, the LHD method was applied for continuous variables, and finally, a Columnwise-Pairwise Algorithm was used for the overall optimization of the design matrix. Experimental results demonstrated that the ODCD method outperforms in terms of the sample space coverage performance.
文摘Digital technology has driven the innovation of architectural design methods and tools,applying digital techniques to allow greater possibilities for more innovative and scientific design of public building spaces.This article first analyzes the characteristics of digital visualization and its advantages in the design of urban public building spaces,including aspects such as visualizing three-dimensional expression,rational analysis of building space,Virtual Reality Experience,and integration of design and construction processes.Subsequently,by introducing digital design methods such as parametric design,algorithmic generation,nonlinear design,and artificial intelligence-assisted design,it explores the methods and implementation approaches of digital visualization in the design of public building spaces.The aim is to offer insights and references for the deeper integration of digital technology into architectural design practices.
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
基金Supported by the National Natural Science Foundation of China(No.52071306)the Natural Science Foundation of Shandong Province(No.ZR2019MEE050)。
文摘The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results.
文摘Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.
基金The National Natural Science Foundation of China(No.50846056)
文摘To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooling technique.The design calculation of the porous ceramics tube type dew point indirect evaporative cooler are carried out from such aspects as the volumes and status parameters of the primary and secondary air,the cooler structure,the heat transfer of the solid porous ceramic tubes and the resistance of the cooler.The calculation results show that the design is reasonable.Finally,based on the design calculation,the porous ceramics tube type dew point indirect evaporative cooler is successfully manufactured.
文摘Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
基金supported by the National Natural Science Foundation of China (Grant No. 51009092)the Doctoral Foundation of Education Ministry of China (Grant No. 20090073120013)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.