Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo...Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.展开更多
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi...A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads.展开更多
The concrete-steel platform structure is rather complicated because it involves such materials as concrete, reinforcing bars, steel, and so on. If the traditional dimension optimization method is employed, the optimal...The concrete-steel platform structure is rather complicated because it involves such materials as concrete, reinforcing bars, steel, and so on. If the traditional dimension optimization method is employed, the optimal design of the platform will meet many handicaps, even it cannot be implemented at all. The multilevel optimal design approach is an efficient tool for the solution of large-scale engineering structures. In this paper, this approach is applied to the optimal design of a concrete-steel platform, which is formulated as a system level optimal design problem and a set of uncoupled substructure level optimal design problems. The process of optimization is a process of iteration between system level and substructure level until the objective function converges. An illustrative example indicates that this method is effective in the optimal design of concrete-steel platforms.展开更多
A bidirectional ribbed concrete beam slab structure was widly adopted for the upper space of industrial buildings.To maintain ample space and minimize the presence of conventional columns,a bidirectional prestressed c...A bidirectional ribbed concrete beam slab structure was widly adopted for the upper space of industrial buildings.To maintain ample space and minimize the presence of conventional columns,a bidirectional prestressed concrete beam is often employed.The intersection node of the prestressed concrete frame beam column was characterized by a high density of steel reinforcement,significant structural loads,and complex construction requirements.To ensure the quality,safety,and progress of prestressed frame beamcolumn intersection nodes during construction,this article proposed a new technology for constructing such nodes,which includes setting the tensioning and haunching ends of nodes at different positions,using ABAQUS finite element software to optimize the design of cross-sectional dimensions,conducting stress analysis simulations.展开更多
With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates ...With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates in concrete mixes has become an alternative solution for coastal and marine structures,especially for offshore structures and artificial islands.In this study,378 seawater,sea sand,and coral aggregate concrete(Coral-SWSSC)specimens were prepared,and their mechanical properties were investigated comprehensively through compressive tests to explore the optimized mix design at different grades.Results showed that the mechanical properties of Coral-SWSSC were strongly correlated with the water-to-binder ratios,coastal particle gradings,and pretreatment method of coastal particles.Based on the experimental results,mix proportion designs of CoralSWSSC were proposed for concrete from C20 to C50 grades,and the failure mechanism of Coral-SWSSC at different grades was discussed according to their respective failure modes.The findings of the current study provide knowledge on the optimized design of Coral-SWSSC,which can be used to promote the application of Coral-SWSSC in offshore,marine,and ocean engineering.展开更多
Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deteriorati...Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.展开更多
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(No.BY2015027-23)State Key Laboratory for Geo Mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.
文摘A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads.
基金This work was financially supported by the Natural Science Foundation of China(Grant No.59895410)
文摘The concrete-steel platform structure is rather complicated because it involves such materials as concrete, reinforcing bars, steel, and so on. If the traditional dimension optimization method is employed, the optimal design of the platform will meet many handicaps, even it cannot be implemented at all. The multilevel optimal design approach is an efficient tool for the solution of large-scale engineering structures. In this paper, this approach is applied to the optimal design of a concrete-steel platform, which is formulated as a system level optimal design problem and a set of uncoupled substructure level optimal design problems. The process of optimization is a process of iteration between system level and substructure level until the objective function converges. An illustrative example indicates that this method is effective in the optimal design of concrete-steel platforms.
基金Funded by the Nantong Science and Technology Plan Project(No.JC2021172)the Cyan and Blue Project of Universities in Jiangsu Province。
文摘A bidirectional ribbed concrete beam slab structure was widly adopted for the upper space of industrial buildings.To maintain ample space and minimize the presence of conventional columns,a bidirectional prestressed concrete beam is often employed.The intersection node of the prestressed concrete frame beam column was characterized by a high density of steel reinforcement,significant structural loads,and complex construction requirements.To ensure the quality,safety,and progress of prestressed frame beamcolumn intersection nodes during construction,this article proposed a new technology for constructing such nodes,which includes setting the tensioning and haunching ends of nodes at different positions,using ABAQUS finite element software to optimize the design of cross-sectional dimensions,conducting stress analysis simulations.
基金supported by the National Natural Science Foundation of China (Grant Nos.52078310,51878420)the Ministry of Science and Technology of China (Grant Nos.2018YFC1504303,2017YFC1503103)Xingliao Talent Program of Liaoning Province (Grant No.XLYC1902038)。
文摘With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates in concrete mixes has become an alternative solution for coastal and marine structures,especially for offshore structures and artificial islands.In this study,378 seawater,sea sand,and coral aggregate concrete(Coral-SWSSC)specimens were prepared,and their mechanical properties were investigated comprehensively through compressive tests to explore the optimized mix design at different grades.Results showed that the mechanical properties of Coral-SWSSC were strongly correlated with the water-to-binder ratios,coastal particle gradings,and pretreatment method of coastal particles.Based on the experimental results,mix proportion designs of CoralSWSSC were proposed for concrete from C20 to C50 grades,and the failure mechanism of Coral-SWSSC at different grades was discussed according to their respective failure modes.The findings of the current study provide knowledge on the optimized design of Coral-SWSSC,which can be used to promote the application of Coral-SWSSC in offshore,marine,and ocean engineering.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2015R1A5A1037548)an NRF Grant(NRF-2020R1A2C4002093)This study was supported by a 2018 Research grant(POINT)from Kangwon National University.
文摘Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.