Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A...In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.展开更多
Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum ph...Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology.Methods:The chemical constituents of YSDZ in the blood were examined using ultraperformance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS).Potential protein targets were obtained from the SwissTargetPrediction database,and the target genes associated with viral pneumonia were identified using GeneCards,DisGeNET,and Online Mendelian Inheritance in Man(OMIM)databases.The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1.Protein-protein interaction networks were constructed using the STRING database.The Metascape database was employed to perform enrichment analyses of Gene Ontology(GO)functions and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathways for the targets,while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks.Further,in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia.Results:Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum.Among these,MAPK1,MAPK3,AKT1,EGFR,and TNF play significant roles.In vitro tests revealed that the medicated serum suppressed the replication of H1N1,RSV,and SARS-CoV-2 replicon.Further,in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1.Conclusion:The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.展开更多
Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD patte...Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.展开更多
In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussi...In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation.展开更多
A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions ...A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.展开更多
Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes...Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other...Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other forms of decision knowledge representation,decision implication has a stronger knowledge representation capability.Attribute granularization may facilitate the knowledge extraction of different attribute granularity layers and thus is of application significance.Decision implication canonical basis(DICB)is the most compact set of decision implications,which can efficiently represent all knowledge in the decision context.In order to mine all deci-sion information on decision context under attribute granulating,this paper proposes an updated method of DICB.To this end,the paper reduces the update of DICB to the updates of decision premises after deleting an attribute and after adding granulation attributes of some attributes.Based on this,the paper analyzes the changes of decision premises,examines the properties of decision premises,designs an algorithm for incrementally generating DICB,and verifies its effectiveness through experiments.In real life,by using the updated algorithm of DICB,users may obtain all decision knowledge on decision context after attribute granularization.展开更多
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining...The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining a more accurate identification model is very important for designing the controller of the control system and maintaining the stable operation of the papermaking process.In this study,a strange nonchaotic particle swarm optimization(SNPSO)algorithm is proposed to identify the models of real papermaking processes,and this identification ability is significantly enhanced compared with particle swarm optimization(PSO).First,random particles are initialized by strange nonchaotic sequences to obtain high-quality solutions.Furthermore,the weight of linear attenuation is replaced by strange nonchaotic sequence and the time-varying acceleration coefficients and a mutation rule with strange nonchaotic characteristics are utilized in SNPSO.The above strategies effectively improve the global and local search ability of particles and the ability to escape from local optimization.To illustrate the effectiveness of SNPSO,step response data are used to identify the models of real industrial processes.Compared with classical PSO,PSO with timevarying acceleration coefficients(PSO-TVAC)and modified particle swarm optimization(MPSO),the simulation results demonstrate that SNPSO has stronger identification ability,faster convergence speed,and better robustness.展开更多
The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible nu...The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible number of vertices so that each vertex of the graph is distinctively defined by its vector of distances to the set of selected vertices.This set of selected vertices is known as the metric basis of a graph.In applied mathematics or computer science,the topic of metric basis is considered as locating number or locating set,and it has applications in robot navigation and finding a beacon set of a computer network.Due to the vast applications of this concept in computer science,optimization problems,and also in chemistry enormous research has been conducted.To extend this research to a four-dimensional structure,we studied the metric basis of the Klein bottle and proved that the Klein bottle has a constant metric dimension for the variation of all its parameters.Although the metric basis is variying in 3 and 4 values when the values of its parameter change,it remains constant and unchanged concerning its order or number of vertices.The methodology of determining the metric basis or locating set is based on the distances of a graph.Therefore,we proved the main theorems in distance forms.展开更多
The shallow-water temperature profile is typically parameterized using a few empirical orthogonal function(EOF)coefficients.However,when the experimental area is poorly known or highly variable,the adaptability of the...The shallow-water temperature profile is typically parameterized using a few empirical orthogonal function(EOF)coefficients.However,when the experimental area is poorly known or highly variable,the adaptability of the EOFs will be significantly reduced.In this study,a new set of basis functions,generated by combining the internal-wave eigenmodes with the average temperature gradient,is developed for characterizing the temperature perturbations.Temperature profiles recorded by a thermistor chain in the South China Sea in 2015 are processed and analyzed.Compared to the EOFs,the new set of basis functions has higher reconstruction accuracy and adaptability;it is also more stable in ocean regions that have internal waves.展开更多
The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical m...The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.展开更多
In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tid...In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that sh...In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that should trade off, and optimize all kinds of conflicts and constraints. A fuzzy linear programming model (FLP) is proposed. On the basis of the inherent fuzziness of QFD system, triangular fuzzy numbers are used to represent all the relationships and correlations, and then, the functional relationships between the customer needs and engineering characteristics and the functional correlations among the engineering characteristics are determined with the information in the house of quality (HoQ) fully used. The fuzzy linear programming (FLP) model aims to find the optimal target values of the engineering characteristics to maximize the customer satisfaction. Finally, the proposed method is illustrated by a numerical example.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
基金Project supported by the National Natural Science Foundation of China(11972120,11472082,12032016)。
文摘In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.
基金supported by Key R&D Project in Shandong ProvinceChina(Grant number:2020CXGC010505)+2 种基金Qingdao Science and Technology Demonstration Program for the Benefit of the PeopleShandong ProvinceChina(Grant number:23-7-8-smjk-3-nsh)。
文摘Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology.Methods:The chemical constituents of YSDZ in the blood were examined using ultraperformance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS).Potential protein targets were obtained from the SwissTargetPrediction database,and the target genes associated with viral pneumonia were identified using GeneCards,DisGeNET,and Online Mendelian Inheritance in Man(OMIM)databases.The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1.Protein-protein interaction networks were constructed using the STRING database.The Metascape database was employed to perform enrichment analyses of Gene Ontology(GO)functions and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathways for the targets,while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks.Further,in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia.Results:Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum.Among these,MAPK1,MAPK3,AKT1,EGFR,and TNF play significant roles.In vitro tests revealed that the medicated serum suppressed the replication of H1N1,RSV,and SARS-CoV-2 replicon.Further,in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1.Conclusion:The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.
基金supported by the National Natural Science Foundation of China(32088101)National key Research and Development Program of China(2017YFC1700105,2021YFA1301603).
文摘Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.
基金sponsored by Guangdong Basic and Applied Basic Research Foundation under Grant No.2021A1515110680Guangzhou Basic and Applied Basic Research under Grant No.202102020340.
文摘In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation.
基金the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenacao de Aperfeic oamento de Pessoal de Nível Superior (Brazilian Agencies)。
文摘A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.
文摘Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金supported by the National Natural Science Foundation of China (Nos.61972238,62072294).
文摘Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other forms of decision knowledge representation,decision implication has a stronger knowledge representation capability.Attribute granularization may facilitate the knowledge extraction of different attribute granularity layers and thus is of application significance.Decision implication canonical basis(DICB)is the most compact set of decision implications,which can efficiently represent all knowledge in the decision context.In order to mine all deci-sion information on decision context under attribute granulating,this paper proposes an updated method of DICB.To this end,the paper reduces the update of DICB to the updates of decision premises after deleting an attribute and after adding granulation attributes of some attributes.Based on this,the paper analyzes the changes of decision premises,examines the properties of decision premises,designs an algorithm for incrementally generating DICB,and verifies its effectiveness through experiments.In real life,by using the updated algorithm of DICB,users may obtain all decision knowledge on decision context after attribute granularization.
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
基金support received from the National Natural Science Foundation of China(Grant No.62073206)Technical Innovation Guidance Project of Shaanxi Province(Grant No.2020CGHJ-007).
文摘The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining a more accurate identification model is very important for designing the controller of the control system and maintaining the stable operation of the papermaking process.In this study,a strange nonchaotic particle swarm optimization(SNPSO)algorithm is proposed to identify the models of real papermaking processes,and this identification ability is significantly enhanced compared with particle swarm optimization(PSO).First,random particles are initialized by strange nonchaotic sequences to obtain high-quality solutions.Furthermore,the weight of linear attenuation is replaced by strange nonchaotic sequence and the time-varying acceleration coefficients and a mutation rule with strange nonchaotic characteristics are utilized in SNPSO.The above strategies effectively improve the global and local search ability of particles and the ability to escape from local optimization.To illustrate the effectiveness of SNPSO,step response data are used to identify the models of real industrial processes.Compared with classical PSO,PSO with timevarying acceleration coefficients(PSO-TVAC)and modified particle swarm optimization(MPSO),the simulation results demonstrate that SNPSO has stronger identification ability,faster convergence speed,and better robustness.
文摘The Metric of a graph plays an essential role in the arrangement of different dimensional structures and finding their basis in various terms.The metric dimension of a graph is the selection of the minimum possible number of vertices so that each vertex of the graph is distinctively defined by its vector of distances to the set of selected vertices.This set of selected vertices is known as the metric basis of a graph.In applied mathematics or computer science,the topic of metric basis is considered as locating number or locating set,and it has applications in robot navigation and finding a beacon set of a computer network.Due to the vast applications of this concept in computer science,optimization problems,and also in chemistry enormous research has been conducted.To extend this research to a four-dimensional structure,we studied the metric basis of the Klein bottle and proved that the Klein bottle has a constant metric dimension for the variation of all its parameters.Although the metric basis is variying in 3 and 4 values when the values of its parameter change,it remains constant and unchanged concerning its order or number of vertices.The methodology of determining the metric basis or locating set is based on the distances of a graph.Therefore,we proved the main theorems in distance forms.
基金The Natural Science Foundation of Shandong Province of China under contract Nos ZR2022MA051 and ZR2020MA090the Fund of China Postdoctoral Science Foundation under contract No.2020M670891+1 种基金the Shandong University of Science and Technology Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province(Innovation Team of Satellite Positioning and Navigation).
文摘The shallow-water temperature profile is typically parameterized using a few empirical orthogonal function(EOF)coefficients.However,when the experimental area is poorly known or highly variable,the adaptability of the EOFs will be significantly reduced.In this study,a new set of basis functions,generated by combining the internal-wave eigenmodes with the average temperature gradient,is developed for characterizing the temperature perturbations.Temperature profiles recorded by a thermistor chain in the South China Sea in 2015 are processed and analyzed.Compared to the EOFs,the new set of basis functions has higher reconstruction accuracy and adaptability;it is also more stable in ocean regions that have internal waves.
基金supported through Project KK.01.1.1.02.0027a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme.
文摘The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.
基金The National Key Fundamental Research and Development Program ("973" Program) of China under contract No. 2010CB429001
文摘In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Natural Science Foundation of China (70571041).
文摘In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that should trade off, and optimize all kinds of conflicts and constraints. A fuzzy linear programming model (FLP) is proposed. On the basis of the inherent fuzziness of QFD system, triangular fuzzy numbers are used to represent all the relationships and correlations, and then, the functional relationships between the customer needs and engineering characteristics and the functional correlations among the engineering characteristics are determined with the information in the house of quality (HoQ) fully used. The fuzzy linear programming (FLP) model aims to find the optimal target values of the engineering characteristics to maximize the customer satisfaction. Finally, the proposed method is illustrated by a numerical example.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.