In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element ...In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.展开更多
Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure...Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.展开更多
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ...In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.展开更多
Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinde...Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinders with perfectly banded interface, a relatively perfect theoretical model of simulating the interracial stress transfer is established. Results: The maximum interfaeial shear stress oeeured at Z=O. At the cross-section of the femoral neck, interfacial shear stress decreased exponentially with the increases of the Z. Shear stress became very small at Z〉0. 1 m, which meant that the shear stress at the far end of the femoral hip prosthesis was very small. In order to avoid the stress concentration and femoral hip prosthesis sinking, interracial stress must remain constant and balanced with the pressure load at Z=O. The radius of the femoral hip prosthesis changed with interfacial shear stress. The maximum value of the radius occured at Z=O, then it decreased at m. Specially, a=18.2 mm at Z=10 ram, a=5.36 mm at Z=98 ram, these are ideal radius. Conclusion: A theoretical model of simulating the interfacial stress is established when the femur and prosthesis are considered as concentric cylinders. The distributions of the interfacial shear and radial stresses with the axial positions are obtained. A theoretical reference for the design of the prosthesis is provided.展开更多
In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hyd...In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m^3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m^3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process.展开更多
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by us...The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by using specimen modal damping ratios and FEM simulation. The measured damping ratios which exhibit strong anisotropy are predicted better by the method presented than by other methods.展开更多
At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r...At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.展开更多
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke...For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.展开更多
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was c...The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.展开更多
Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this...Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this paper, NVH performance of a lightweight auto-body prototype using alternative materials and gauge thickness were studied by finite element materials and boundary element method (BEM). In order to fred the most contributing panel to the peak value of response, the panel acoustic contribution analysis (PACA) was performed and the most effective modification area was located. Finally, the sound pressure was reduced by putting damping material on these parts.展开更多
The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--...The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.展开更多
The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing nat...The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing natural defects, inclusions or in homogeneities is of great importance for both a scientifically or industrial point of view. Fatigue behavior in components is often affected by the presence of residual stresses introduced by processes such as actuator system. Analysis can provide the estimation of the crack growth curves with sufficient accuracy, even in case of complicated bell crank structures which are crucial for preserving aileron integrity and which participate in transfer of load. Probability of crack detection or any other damage detection is a result of many factors. An endurance life prediction of bell crank is used finite element analyses. Endurance test data for slim test specimens were compared with the predicted fatigue life for verification.展开更多
Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2...Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2.15Li 0.12Zr alloy at high temperature was conducted by using the rigid visco plastic finite element method. The relations between the total load and the displacement during the forging, and the distributions of stress, strain, temperature and strain rate, which can provide useful information for the process design, are obtained.展开更多
Dependency on deterministic design techniques without attention to inherent process variations and uncertainties in gear design and manufacturing processes can lead to unreliable results and affect the performance of ...Dependency on deterministic design techniques without attention to inherent process variations and uncertainties in gear design and manufacturing processes can lead to unreliable results and affect the performance of a gearing system. A better understanding of the impact of uncertainty associated with the system input on the system output can be achieved by including reliability techniques to accomplish a reliable design methodology. This emerged the need to consider the probabilistic behavior of the stress distribution on the gear tooth during the design phase. The present effort reports on the application of the SSI theory within the context of a “Design for Reliability” approach in support a detailed gear design methodology for the evaluation the tooth-root strength with FEM-based verification. The SSI theory is formulated to predict the effect of the root fillet generated by a rack or hob tool with and without protuberance on the gear system reliability. The results obtained from the probabilistic analysis strongly agreed with the FEM’ results across a range of different gear tooth fillet profiles. A quantitative assessment of the investigated gear sets showed the highest tooth-root stress was associated with the lowest tip radius of the generating tool. This approach helps with making the decision by quantifying the impact of stress and strength variations during the gear design stage.展开更多
In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key tech...In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key technologies of backward tracing scheme based on 3D rigid-viscoplastic FEM were explored, and some valid algorithms or methods were proposed. A velocity field was generated by combining the direct iterative method with Newton-Raphson iterative method, and then the initial velocity field of backward tracing simulation was achieved by reversing the direction of the velocity field. A new method, namely the tracking-fitting-revising method, was proposed and can be used to determinate the criterion of separating a node from die in the backward tracing simulation. The ceasing criterion of the backward tracing simulation is that all the boundary nodes are detached from dies. Based on the above key technologies, the 3D backward tracing simulation system for the blade precision forging was developed, and its feasibility and reliability were verified by forward loading simulation.展开更多
The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance f...The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance for making decision on the optimal choice of process parameters and mould structure. Trial forging was used to verify the effectiveness of FEM simulation results.展开更多
Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibratio...Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibration, environmental attack and long-term service. Moreover, dynamical systems of a beam usually possess a non-linear character, which causes practical difficulties on the model-based damage detection techniques. This paper presents a novel approach to detect damage in a simply supported beam. In this study, a numerical simulation using the Finite Element Method (FEM) has been done to determine the frequencies to detect the crack in a concrete beam of length 0.12 m and width 0.015 m. A vibration-based model is employed to simulate the results by using COMSOL Multiphysics. At the tip, by performing the computational analysis it is found that the presence of cracks affects the natural frequencies of the concrete structure. It is observed that after applying load</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the frequencies of the cracked beam ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been changed</span><span style="font-family:Verdana;"> with the variation of the location of the crack for all the modes of vibration. It also found that maximum frequency reserved at the cracked point so it will also help us to detect different hidden defect</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in any structure. A comparison is also made with the experimental results. It is also found that the effect of crack is more near the fixed end than at the free end.展开更多
基金Supported by National Natural Science Foundation of China(No.50539010)
文摘In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.
文摘Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.
文摘In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.
文摘Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinders with perfectly banded interface, a relatively perfect theoretical model of simulating the interracial stress transfer is established. Results: The maximum interfaeial shear stress oeeured at Z=O. At the cross-section of the femoral neck, interfacial shear stress decreased exponentially with the increases of the Z. Shear stress became very small at Z〉0. 1 m, which meant that the shear stress at the far end of the femoral hip prosthesis was very small. In order to avoid the stress concentration and femoral hip prosthesis sinking, interracial stress must remain constant and balanced with the pressure load at Z=O. The radius of the femoral hip prosthesis changed with interfacial shear stress. The maximum value of the radius occured at Z=O, then it decreased at m. Specially, a=18.2 mm at Z=10 ram, a=5.36 mm at Z=98 ram, these are ideal radius. Conclusion: A theoretical model of simulating the interfacial stress is established when the femur and prosthesis are considered as concentric cylinders. The distributions of the interfacial shear and radial stresses with the axial positions are obtained. A theoretical reference for the design of the prosthesis is provided.
基金Project(2010CB732101) supported by the National Basic Research Program of China Project(SKLQ 008) supported by the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering of China
文摘In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m^3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m^3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process.
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
文摘The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by using specimen modal damping ratios and FEM simulation. The measured damping ratios which exhibit strong anisotropy are predicted better by the method presented than by other methods.
基金This research was funded by the Constructional Science and Technology Project of West Transportation,Ministry of Transport of People’s Republic of China(2003-318-799-17)
文摘At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Project No.[2016] 546)+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1716)
文摘For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.
文摘The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.
文摘Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this paper, NVH performance of a lightweight auto-body prototype using alternative materials and gauge thickness were studied by finite element materials and boundary element method (BEM). In order to fred the most contributing panel to the peak value of response, the panel acoustic contribution analysis (PACA) was performed and the most effective modification area was located. Finally, the sound pressure was reduced by putting damping material on these parts.
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.
文摘The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing natural defects, inclusions or in homogeneities is of great importance for both a scientifically or industrial point of view. Fatigue behavior in components is often affected by the presence of residual stresses introduced by processes such as actuator system. Analysis can provide the estimation of the crack growth curves with sufficient accuracy, even in case of complicated bell crank structures which are crucial for preserving aileron integrity and which participate in transfer of load. Probability of crack detection or any other damage detection is a result of many factors. An endurance life prediction of bell crank is used finite element analyses. Endurance test data for slim test specimens were compared with the predicted fatigue life for verification.
文摘Based on synthetically considering the coupled thermo mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone shaped workpiece of Al 5.44Mg 2.15Li 0.12Zr alloy at high temperature was conducted by using the rigid visco plastic finite element method. The relations between the total load and the displacement during the forging, and the distributions of stress, strain, temperature and strain rate, which can provide useful information for the process design, are obtained.
文摘Dependency on deterministic design techniques without attention to inherent process variations and uncertainties in gear design and manufacturing processes can lead to unreliable results and affect the performance of a gearing system. A better understanding of the impact of uncertainty associated with the system input on the system output can be achieved by including reliability techniques to accomplish a reliable design methodology. This emerged the need to consider the probabilistic behavior of the stress distribution on the gear tooth during the design phase. The present effort reports on the application of the SSI theory within the context of a “Design for Reliability” approach in support a detailed gear design methodology for the evaluation the tooth-root strength with FEM-based verification. The SSI theory is formulated to predict the effect of the root fillet generated by a rack or hob tool with and without protuberance on the gear system reliability. The results obtained from the probabilistic analysis strongly agreed with the FEM’ results across a range of different gear tooth fillet profiles. A quantitative assessment of the investigated gear sets showed the highest tooth-root stress was associated with the lowest tip radius of the generating tool. This approach helps with making the decision by quantifying the impact of stress and strength variations during the gear design stage.
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young Scholars Project(02H53061) supported by the Aeronautical Science Foundation of China Project(05-1) supported by the Foundation of State Key Laboratory of Plastic Forming Simulation and Mould Technology
文摘In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key technologies of backward tracing scheme based on 3D rigid-viscoplastic FEM were explored, and some valid algorithms or methods were proposed. A velocity field was generated by combining the direct iterative method with Newton-Raphson iterative method, and then the initial velocity field of backward tracing simulation was achieved by reversing the direction of the velocity field. A new method, namely the tracking-fitting-revising method, was proposed and can be used to determinate the criterion of separating a node from die in the backward tracing simulation. The ceasing criterion of the backward tracing simulation is that all the boundary nodes are detached from dies. Based on the above key technologies, the 3D backward tracing simulation system for the blade precision forging was developed, and its feasibility and reliability were verified by forward loading simulation.
文摘The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance for making decision on the optimal choice of process parameters and mould structure. Trial forging was used to verify the effectiveness of FEM simulation results.
文摘Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibration, environmental attack and long-term service. Moreover, dynamical systems of a beam usually possess a non-linear character, which causes practical difficulties on the model-based damage detection techniques. This paper presents a novel approach to detect damage in a simply supported beam. In this study, a numerical simulation using the Finite Element Method (FEM) has been done to determine the frequencies to detect the crack in a concrete beam of length 0.12 m and width 0.015 m. A vibration-based model is employed to simulate the results by using COMSOL Multiphysics. At the tip, by performing the computational analysis it is found that the presence of cracks affects the natural frequencies of the concrete structure. It is observed that after applying load</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the frequencies of the cracked beam ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been changed</span><span style="font-family:Verdana;"> with the variation of the location of the crack for all the modes of vibration. It also found that maximum frequency reserved at the cracked point so it will also help us to detect different hidden defect</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in any structure. A comparison is also made with the experimental results. It is also found that the effect of crack is more near the fixed end than at the free end.