This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous work...This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst...A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.展开更多
Purpose This work aims to study the increase in dead layer thickness of an HPGe N-type detector during its operational period from 2012 to 2018.Methods The dead layer was examined along three Ge-crystal surfaces,such ...Purpose This work aims to study the increase in dead layer thickness of an HPGe N-type detector during its operational period from 2012 to 2018.Methods The dead layer was examined along three Ge-crystal surfaces,such as outer frontal,outer lateral,and inner lateral.These parameters were optimized using response surface methodology(RSM)with a Box–Behnken design(BBD).The Monte Carlo calculations using the GAMOS(Geant4-based Architecture for Medicine-Oriented Simulations)code were performed to evaluate the detector’s efficiency at different values of the inactive germanium layer.Results and conclusion The optimal combination of dead layer thickness has been identified using the desirability function approach,which is a useful tool to optimize multi-response problems.To find the variation in dead layer thickness over the operational period,the optimization procedure was reiterated for both experimental efficiencies measured in 2012 and 2018.The obtained results show that dead layers thickness has increased from 0.6141 mm to 0.7447 mm,0.0803 mm to 2.2721 mm,and 1.5012 mm to 1.6091 mm for the outer frontal,outer lateral,and inner lateral surfaces,respectively.展开更多
5G network is expected to support massive user connections and exponentially increasing wireless services,which makes network security unprecedentedly important.Unlike traditional security-guaranteeing techniques whic...5G network is expected to support massive user connections and exponentially increasing wireless services,which makes network security unprecedentedly important.Unlike traditional security-guaranteeing techniques which rely heavily on cryptographic approaches at upper layers of the protocol stack,physical-layer security(PLS) solutions fully take advantages of the characteristics of wireless channels to degrade the received signal qualities at the malicious users,and realize keyless secure transmission via signal design and signal processing techniques.PLS avoids the difficulties in the distribution and management of secret keys,and provides flexible security levels through adaptive transmission protocol design.Moreover,PLS techniques match the features of 5G networks well.Therefore,the application of PLS to 5G networks is a promising solution to address the security threats.This article presents a comprehensive review of the state-of-the-art PLS techniques,and discusses their applications in 5G networks.We first summarize the principle and advantages of PLS techniques,and point out the reasons why PLS is suitable for 5G networks.Then,we review the existing PLS methods in literature,and highlight severalPLS solutions that are expected to be applied in 5G networks.Finally,we conclude this article and figure out some further research directions.展开更多
文摘This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.
基金Sponsored by the National Science and Technology Major Special Project of China (Grant No.2011ZX03003-003-02)the Natural Science Foundation of China (Grant No. 60972070)+2 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2009BA2090)the Foundation of Chongqing Educational Committee ( Grant No. KJ100514)the Special Fund of Chongqing Key Laboratory
文摘A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.
文摘Purpose This work aims to study the increase in dead layer thickness of an HPGe N-type detector during its operational period from 2012 to 2018.Methods The dead layer was examined along three Ge-crystal surfaces,such as outer frontal,outer lateral,and inner lateral.These parameters were optimized using response surface methodology(RSM)with a Box–Behnken design(BBD).The Monte Carlo calculations using the GAMOS(Geant4-based Architecture for Medicine-Oriented Simulations)code were performed to evaluate the detector’s efficiency at different values of the inactive germanium layer.Results and conclusion The optimal combination of dead layer thickness has been identified using the desirability function approach,which is a useful tool to optimize multi-response problems.To find the variation in dead layer thickness over the operational period,the optimization procedure was reiterated for both experimental efficiencies measured in 2012 and 2018.The obtained results show that dead layers thickness has increased from 0.6141 mm to 0.7447 mm,0.0803 mm to 2.2721 mm,and 1.5012 mm to 1.6091 mm for the outer frontal,outer lateral,and inner lateral surfaces,respectively.
基金supported in part by the National Natural Science Foundation of China under Grants No.61671369 and 61431011the National Science and Technology Major Project of China under Grant No.2016ZX03001012004+1 种基金the Open Research Fund of the State Key Laboratory of Integrated Services Networks,Xidian University,under Grant No.ISN18-02the Fundamental Research Funds for the Central Universities of China
文摘5G network is expected to support massive user connections and exponentially increasing wireless services,which makes network security unprecedentedly important.Unlike traditional security-guaranteeing techniques which rely heavily on cryptographic approaches at upper layers of the protocol stack,physical-layer security(PLS) solutions fully take advantages of the characteristics of wireless channels to degrade the received signal qualities at the malicious users,and realize keyless secure transmission via signal design and signal processing techniques.PLS avoids the difficulties in the distribution and management of secret keys,and provides flexible security levels through adaptive transmission protocol design.Moreover,PLS techniques match the features of 5G networks well.Therefore,the application of PLS to 5G networks is a promising solution to address the security threats.This article presents a comprehensive review of the state-of-the-art PLS techniques,and discusses their applications in 5G networks.We first summarize the principle and advantages of PLS techniques,and point out the reasons why PLS is suitable for 5G networks.Then,we review the existing PLS methods in literature,and highlight severalPLS solutions that are expected to be applied in 5G networks.Finally,we conclude this article and figure out some further research directions.