Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into ...Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.展开更多
Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the mod...Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.展开更多
Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in ...Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in various design environments. In order to obtain solutions that are not only "multi-objectively" optimal, but also reliable and robust, a probabilistic optimization method was presented by integrating six sigma philosophy and multi-objective genetic algorithm. With this method, multi-objective genetic algorithm was adopted to obtain the global Pareto solutions, and six sigma method was used to improve the reliability and robustness of those optimal solutions. Two engineering design problems were provided as examples to illustrate the proposed method.展开更多
基金Shanghai Leading Academic Discipline Project,China(No.B602)
文摘Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS.
基金the National Natural Science Foundation of China (No:70572044)New Central Elitist(No:04-0240)
文摘Using Response Surface Methodology (RSM), an optimizing model of concurrent parameter and tolerance design is proposed where response mean equals its target in the target being best. The optimizing function of the model is the sum of quality loss and tolerance cost subjecting to the variance confidence region of which six sigma capability can be assured. An example is illustrated in order to compare the differences between the developed model and the parameter design with minimum variance. The results show that the proposed method not only achieves robustness, but also greatly reduces cost. The objectives of high quality and low cost of product and process can be achieved simultaneously by the application of six sigma concurrent parameter and tolerance design.
基金The National Natural Science Foundation of China(No. 50475020)
文摘Uncertainties in engineering design may lead to low reliable solutions that also exhibit high sensitivity to uncontrollable variations. In addition, there often exist several conflicting objectives and constraints in various design environments. In order to obtain solutions that are not only "multi-objectively" optimal, but also reliable and robust, a probabilistic optimization method was presented by integrating six sigma philosophy and multi-objective genetic algorithm. With this method, multi-objective genetic algorithm was adopted to obtain the global Pareto solutions, and six sigma method was used to improve the reliability and robustness of those optimal solutions. Two engineering design problems were provided as examples to illustrate the proposed method.