Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A bou...Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples.展开更多
Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mecha...Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.展开更多
Marine structures operating in natural ocean environment are subjected to various stochastic loads. For design of the marine structures, the most important task is to determine environmental load design criterion. Thi...Marine structures operating in natural ocean environment are subjected to various stochastic loads. For design of the marine structures, the most important task is to determine environmental load design criterion. This paper presents a method to determine the optimum environmental load design criterion for marine structures. This method is based on the investment and benefit analysis and it can reach the design purpose of decreasing total costs during the service life of the structures and increasing economic benefits.展开更多
The construction of the TGP has proceeded smoothly since its commencement of construction in 1994 and the construction quality is good in general. The construction proceeds in accordance with the master project schedu...The construction of the TGP has proceeded smoothly since its commencement of construction in 1994 and the construction quality is good in general. The construction proceeds in accordance with the master project schedule in preliminary design approved by the central government and the investment can be controlled within the total budget of the preliminary design. The Changjiang Water Resources Commission, taking charge of the general design jobs of the TGP, has consistently paid attention to the project quality in the first place and carried out large amount of investigation, design and scientific research work. This paper makes an overall summarization and presentation on important technical issues in the design, such as dam, powerhouse structure, permanent ship locks, ship lift, project safety monitoring, main river closure and the 2nd stage cofferdam, mechanical and electric design etc., and put forwards a lot of suggestions about optimizing design schemes and measures for smoothing away construction difficulties in accordance with construction progress.展开更多
Constructional engineering is the fundamental industry of China and along with the constantly improving of science and technology level in recent years, BIM technology has been gradually applied in constructional engi...Constructional engineering is the fundamental industry of China and along with the constantly improving of science and technology level in recent years, BIM technology has been gradually applied in constructional engineering field of China, and it has exerted relatively sound application effects, thus actively proving the construction efficiency and quality. In this study, mainly based on BIM technology, I analyze the application of BIM technology in structural design of constructional engineering respectively from field data analysis, structure parameter design, interior design and professional coordination design, and analyze the application effects of BIM technology in structural design of constructional engineering by combining practical cases, which is expected to serve as the effective theoretical basis for the improvement of structural design of constructional engineering in China.展开更多
The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante...The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.展开更多
With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more s...With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.展开更多
It is known that structural optimization may lead to designs of structures having low stability and sometimes even kinematically unstable designs. This paper presents a robust design method for improving the stability...It is known that structural optimization may lead to designs of structures having low stability and sometimes even kinematically unstable designs. This paper presents a robust design method for improving the stability of opti mized structures. A new approach is proposed, in which cer tain perturbation loads are introduced and the corresponding compliance is added to the objective function as a penaliza tion. The stability of the optimized structures can thus be improved substantially by considering structural responses to the original and the introduced loads. Numerical exam ples show the simplicity and effectiveness of the proposed method.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to con...Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to continuously adjustable pressure, adjustable flow control to achieve. In this paper, the structure design of a combination of oil tanks, combined with oil circuit examples in the case of no need to adjust the pressure, adjust the flow rate, to achieve the high speed, light load of the typical operating requirements and hydraulic servo feedback.展开更多
With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structu...With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structure design and scientifically and rationally design the building structure to facilitate onsite construction.Based on this situation,the current BIM technology plays an increasingly important role in the process of building structure design and plays an active role in promoting optimal building structure design.展开更多
Design is a goal-oriented planning activity for creating products,processes,and systems with desired functions through specifications.It is a decision-making exploration:the design outcome may vary greatly depending o...Design is a goal-oriented planning activity for creating products,processes,and systems with desired functions through specifications.It is a decision-making exploration:the design outcome may vary greatly depending on the designer’s knowledge and philosophy.Integrated design is one type of design philosophy that takes an interdisciplinary and holistic approach.In civil engineering,structural design is such an activity for creating buildings and infrastructures.Recently,structural design in many countries has emphasized a performance-based philosophy that simultaneously considers a structure’s safety,durability,serviceability,and sustainability.Consequently,integrated design in civil engineering has become more popular,useful,and important.Material-oriented integrated design and construction of structures(MIDCS)combine materials engineering and structural engineering in the design stage:it fully utilizes the strengths of materials by selecting the most suitable structural forms and construction methodologies.This paper will explore real-world examples of MIDCS,including the realization of MIDCS in timber seismic-resistant structures,masonry arch structures,long-span steel bridges,prefabricated/on-site extruded light-weight steel structures,fiber-reinforced cementitious composites structures,and fiber-reinforced polymer bridge decks.Additionally,advanced material design methods such as bioinspired design and structure construction technology of additive manufacturing are briefly reviewed and discussed to demonstrate how MIDCS can combine materials and structures.A unified strengthdurability design theory is also introduced,which is a human-centric,interdisciplinary,and holistic approach to the description and development of any civil infrastructure and includes all processes directly involved in the life cycle of the infrastructure.Finally,this paper lays out future research directions for further development in the field.展开更多
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnec...High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.展开更多
Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the ...Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.展开更多
A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure s...A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure surface are obtained.Thestrength design formulae are proposed.展开更多
There are many factors affecting the monolithic lining engineering of rotary kilns,resulting in the difficult quality control.In this paper,the key points of the whole lining engineering were discussed from the aspect...There are many factors affecting the monolithic lining engineering of rotary kilns,resulting in the difficult quality control.In this paper,the key points of the whole lining engineering were discussed from the aspects of lining structure design,personnel preparation,site construction management,maintenance and baking.展开更多
基金supported by the National Natural Science Foundation of China (90816025, 10721062)National Basic Research Program of China (2006CB601205)Program for New Century Excellent Talents in University of the Ministry of Education of China (NCET-04-0272)
文摘Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples.
文摘Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.
文摘Marine structures operating in natural ocean environment are subjected to various stochastic loads. For design of the marine structures, the most important task is to determine environmental load design criterion. This paper presents a method to determine the optimum environmental load design criterion for marine structures. This method is based on the investment and benefit analysis and it can reach the design purpose of decreasing total costs during the service life of the structures and increasing economic benefits.
文摘The construction of the TGP has proceeded smoothly since its commencement of construction in 1994 and the construction quality is good in general. The construction proceeds in accordance with the master project schedule in preliminary design approved by the central government and the investment can be controlled within the total budget of the preliminary design. The Changjiang Water Resources Commission, taking charge of the general design jobs of the TGP, has consistently paid attention to the project quality in the first place and carried out large amount of investigation, design and scientific research work. This paper makes an overall summarization and presentation on important technical issues in the design, such as dam, powerhouse structure, permanent ship locks, ship lift, project safety monitoring, main river closure and the 2nd stage cofferdam, mechanical and electric design etc., and put forwards a lot of suggestions about optimizing design schemes and measures for smoothing away construction difficulties in accordance with construction progress.
文摘Constructional engineering is the fundamental industry of China and along with the constantly improving of science and technology level in recent years, BIM technology has been gradually applied in constructional engineering field of China, and it has exerted relatively sound application effects, thus actively proving the construction efficiency and quality. In this study, mainly based on BIM technology, I analyze the application of BIM technology in structural design of constructional engineering respectively from field data analysis, structure parameter design, interior design and professional coordination design, and analyze the application effects of BIM technology in structural design of constructional engineering by combining practical cases, which is expected to serve as the effective theoretical basis for the improvement of structural design of constructional engineering in China.
文摘The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.
文摘With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.
基金supported by State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,China(GZ1305)the National Natural Science Foundation of China(11002058 and 11372004)
文摘It is known that structural optimization may lead to designs of structures having low stability and sometimes even kinematically unstable designs. This paper presents a robust design method for improving the stability of opti mized structures. A new approach is proposed, in which cer tain perturbation loads are introduced and the corresponding compliance is added to the objective function as a penaliza tion. The stability of the optimized structures can thus be improved substantially by considering structural responses to the original and the introduced loads. Numerical exam ples show the simplicity and effectiveness of the proposed method.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
文摘Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to continuously adjustable pressure, adjustable flow control to achieve. In this paper, the structure design of a combination of oil tanks, combined with oil circuit examples in the case of no need to adjust the pressure, adjust the flow rate, to achieve the high speed, light load of the typical operating requirements and hydraulic servo feedback.
文摘With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structure design and scientifically and rationally design the building structure to facilitate onsite construction.Based on this situation,the current BIM technology plays an increasingly important role in the process of building structure design and plays an active role in promoting optimal building structure design.
基金This work was supported by the Science and Technology Development Fund,Macao SAR(0083/2018/A2)Multi-Year Research Grant(MYRG2019-00135-IAPME)Research&Development Grant for Chair Professor(CPG2020-00002-IAPME).
文摘Design is a goal-oriented planning activity for creating products,processes,and systems with desired functions through specifications.It is a decision-making exploration:the design outcome may vary greatly depending on the designer’s knowledge and philosophy.Integrated design is one type of design philosophy that takes an interdisciplinary and holistic approach.In civil engineering,structural design is such an activity for creating buildings and infrastructures.Recently,structural design in many countries has emphasized a performance-based philosophy that simultaneously considers a structure’s safety,durability,serviceability,and sustainability.Consequently,integrated design in civil engineering has become more popular,useful,and important.Material-oriented integrated design and construction of structures(MIDCS)combine materials engineering and structural engineering in the design stage:it fully utilizes the strengths of materials by selecting the most suitable structural forms and construction methodologies.This paper will explore real-world examples of MIDCS,including the realization of MIDCS in timber seismic-resistant structures,masonry arch structures,long-span steel bridges,prefabricated/on-site extruded light-weight steel structures,fiber-reinforced cementitious composites structures,and fiber-reinforced polymer bridge decks.Additionally,advanced material design methods such as bioinspired design and structure construction technology of additive manufacturing are briefly reviewed and discussed to demonstrate how MIDCS can combine materials and structures.A unified strengthdurability design theory is also introduced,which is a human-centric,interdisciplinary,and holistic approach to the description and development of any civil infrastructure and includes all processes directly involved in the life cycle of the infrastructure.Finally,this paper lays out future research directions for further development in the field.
基金National Natural Science Foundation of China (Grant No. 50575008)the Aeronautical Science Foundation of China (Grant No. 05B01004)
文摘High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.
文摘Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.
文摘A computer program is developed for the nonlincar analysis of prestressedconcrete and nonprestressed concrete members subjected to combined biaxial bending andaxial load.The strength-interaction diagrams and failure surface are obtained.Thestrength design formulae are proposed.
文摘There are many factors affecting the monolithic lining engineering of rotary kilns,resulting in the difficult quality control.In this paper,the key points of the whole lining engineering were discussed from the aspects of lining structure design,personnel preparation,site construction management,maintenance and baking.