Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining ...Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.展开更多
A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is d...A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1.展开更多
We first design and analyze the contour surface of the globoidal indexing cam with the aid of computer, and then do optimum design according to the requirements of dynamics. Finally, we discuss the problem of the pres...We first design and analyze the contour surface of the globoidal indexing cam with the aid of computer, and then do optimum design according to the requirements of dynamics. Finally, we discuss the problem of the pressure angle of the globoidal indexing cam mechanism in detail and put forward a new concept of equivalent pressure angle.展开更多
Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed i...Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
In recent years, the researches on the theory and application of public articles and mechanism design at home and abroad has attracted more and more attentions. The paper uses the idea of mechanism design and simulati...In recent years, the researches on the theory and application of public articles and mechanism design at home and abroad has attracted more and more attentions. The paper uses the idea of mechanism design and simulation to analyze and solve environmental pollution improvement. By establishing a simple environmental pollution improvement model, the paper transforms pollution control into binary decision established by a sewage treatment plant and different decisions by the fisherman on the establishment of sewage treatment plants. The paper observes the results of applying different mechanisms and proposes the suggestions of implementin~ various pollution control methods.展开更多
Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to...A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.展开更多
Since the knotters on the Chinese rectangular balers are imported from outside of the country, Chinese knotters with independent intellectual property rights is far away from being closed. In order to harvest a large ...Since the knotters on the Chinese rectangular balers are imported from outside of the country, Chinese knotters with independent intellectual property rights is far away from being closed. In order to harvest a large quantity of straw in a short period on the small-scale lands of China, basic requirements on the knotters are summarized. Mathematical model of the knotter is also determined uniquely. Furthermore, the ^-type-knots knotter equipped on the Chinese square baler to form the ~ type knots is designed. Knotting rate experiments of the qb-type-knots knotter on the test bench and in the wheat/maize straws covered fields are carried out to check the knotting performances of the knotter. The parameters of the formed knots are also tested. The experiments results show that the knotting rate of the qb-type-knots knotter reaches 100.0% on the test bench without straws, while reaches 99.6% in the wheat straws covered field and 100.0% in the maize straws covered field. The average maximum force in the knotting process is 194.7 N in the lab experiment. The length out of the knots formed in lab is 15.9%-20.6% lower than the knots formed in the field experiment. The breaking force of the knots formed in the field is 115.9%-167.2% higher than the knots formed in lab due to the higher preload and interactions with the compacted bales. Highly relevant relationships exist between the breaking force of the formed knots and the maximum force in the forming process of the knots in the lab experiment. The designed knotter breaks out the embarrassing situation of the domestic knotters which don't have independent intellectual property rights, and promotes the development of Chinese knotter technology, and the mathematical model is helpful for designing new type of knotters.展开更多
Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.Ho...Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.However,the buffer effect of most bio-robots is not satisfactory owing to the simple design of their buffer systems.In this paper,a physiological analysis of the ruminant musculoskeletal system is presented to explain the intrinsic buffer mechanism of motion.Based on the physical buffer parts of the ruminant limbs,the corresponding bionic mappings were determined.These mappings were used to guide the mechanism design of the robot multistage buffer system.The multistage buffer system includes two main buffer mechanisms:the first stage and the second stage.The buffer mechanism analysis of the first stage and multiple stages is discussed in theory to compare the effects between the normal single buffer system and the novel multistage buffer system.Then,the detailed mechanical structure of the limbs was designed based on the limb mechanism design.To further verify the superior efficacy of the multistage buffer system,the corresponding walking simulation experiments were conducted after the virtual prototype of a quadruped robot with a novel limb was built completely.Both theoretical analysis and simulation experiments prove that the bionic robot design with the novel multistage buffer system achieves better motion performance than the traditional robot buffer design and can be regarded as the design template of the robot limb.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
When an oceanographic vessel is sailing, the currents near the surface of ship hull are rapid, making it hard to meet the environmental requirements of scientific observation equipment. To guarantee the installation s...When an oceanographic vessel is sailing, the currents near the surface of ship hull are rapid, making it hard to meet the environmental requirements of scientific observation equipment. To guarantee the installation space and environmental requirements of the observation equipment, the drop keel system was proposed for the first time for ocean-graphic ships at China, to avoid the traditional "rudder-shaft" type fin keel's disadvantage. The research study will examine the operational mechanism and functions of the drop keel system, the operating conditions of the fin keel to determine the driver method and its arrangement, and the locking method of the fin keel underwater. The research wilI also provide some general designs for analyzing the best plan for the drop keel system.展开更多
As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexteri...As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexterity demands.The hyper-redundant bionic robots can complete complex tasks in the unstructured environments by simulating the motion characteristics of the elephant’s trunk and octopus tentacles.Compared with traditional robots,the hyper-redundant bionic robots can accomplish complex tasks because of their flexible structure.A hyper-redundant elephant’s trunk robot(HRETR)with an open structure is developed in this paper.The content includes mechanical structure design,kinematic analysis,virtual prototype simulation,control system design,and prototype building.This design is inspired by the flexible motion of an elephant’s trunk,which is expansible and is composed of six unit modules,namely,3UPS-PS parallel in series.First,the mechanical design of the HRETR is completed according to the motion characteristics of an elephant’s trunk and based on the principle of mechanical bionic design.After that,the backbone mode method is used to establish the kinematic model of the robot.The simulation software SolidWorks and ADAMS are combined to analyze the kinematic characteristics when the trajectory of the end moving platform of the robot is assigned.With the help of ANSYS,the static stiffness of each component and the whole robot is analyzed.On this basis,the materials of the weak parts of the mechanical structure and the hardware are selected reasonably.Next,the extensible structures of software and hardware control system are constructed according to the modular and hierarchical design criteria.Finally,the prototype is built and its performance is tested.The proposed research provides a method for the design and development for the hyper-redundant bionic robot.展开更多
Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately containe...Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:展开更多
A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynami...A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.展开更多
Aiming at the paraffin-deposition problem of a beam well, the automatic paraffin-controlling device is designed by making use of ratchet-pallet mechanism, cam mechanism and modern designing method. The device has four...Aiming at the paraffin-deposition problem of a beam well, the automatic paraffin-controlling device is designed by making use of ratchet-pallet mechanism, cam mechanism and modern designing method. The device has four main functions: paraffin-controlling, paraffin removal, centralizing the pumping rod, and improving the safety of well tubing. This device integrates the advantages of the paraffin control, such as strong magnetic paraffin controlling and mechanical paraffin-cutting. Theoretical analysis shows that this device has fine working reliability. It turns out to be a new device which can solve the paraffin-deposition problem of a beam well economically and efficiently.展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produce...The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.展开更多
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-dir...The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.展开更多
Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the res...Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.展开更多
基金This project is supported by National Natural Science Foundation of China(No.598005001, No.10332010) and Key Science and Technology Research Project of Ministry of Education (No.104060).
文摘Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2003AA404190).
文摘A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1.
文摘We first design and analyze the contour surface of the globoidal indexing cam with the aid of computer, and then do optimum design according to the requirements of dynamics. Finally, we discuss the problem of the pressure angle of the globoidal indexing cam mechanism in detail and put forward a new concept of equivalent pressure angle.
基金supported by the National Key R&D Program of China(No.2018YFB1307900)the Natural Science Foundation of Shanxi Province(Nos.201901D211009,201901D211010)the Technology In⁃novation Foundation of Shanxi University(No.2019L 0177).
文摘Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
文摘In recent years, the researches on the theory and application of public articles and mechanism design at home and abroad has attracted more and more attentions. The paper uses the idea of mechanism design and simulation to analyze and solve environmental pollution improvement. By establishing a simple environmental pollution improvement model, the paper transforms pollution control into binary decision established by a sewage treatment plant and different decisions by the fisherman on the establishment of sewage treatment plants. The paper observes the results of applying different mechanisms and proposes the suggestions of implementin~ various pollution control methods.
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金supported by National Natural Science Foundation of China (Grant No. 50875161, No. 50405017)National Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z118)
文摘A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT13039)National Natural Science Foundation of China(Grant No.51175499)+1 种基金Beijing Municipal Natural Science Foundation of China(Grant No.6112015)Chinese Universities Scientific Fund(Grant No.2012YJ091)
文摘Since the knotters on the Chinese rectangular balers are imported from outside of the country, Chinese knotters with independent intellectual property rights is far away from being closed. In order to harvest a large quantity of straw in a short period on the small-scale lands of China, basic requirements on the knotters are summarized. Mathematical model of the knotter is also determined uniquely. Furthermore, the ^-type-knots knotter equipped on the Chinese square baler to form the ~ type knots is designed. Knotting rate experiments of the qb-type-knots knotter on the test bench and in the wheat/maize straws covered fields are carried out to check the knotting performances of the knotter. The parameters of the formed knots are also tested. The experiments results show that the knotting rate of the qb-type-knots knotter reaches 100.0% on the test bench without straws, while reaches 99.6% in the wheat straws covered field and 100.0% in the maize straws covered field. The average maximum force in the knotting process is 194.7 N in the lab experiment. The length out of the knots formed in lab is 15.9%-20.6% lower than the knots formed in the field experiment. The breaking force of the knots formed in the field is 115.9%-167.2% higher than the knots formed in lab due to the higher preload and interactions with the compacted bales. Highly relevant relationships exist between the breaking force of the formed knots and the maximum force in the forming process of the knots in the lab experiment. The designed knotter breaks out the embarrassing situation of the domestic knotters which don't have independent intellectual property rights, and promotes the development of Chinese knotter technology, and the mathematical model is helpful for designing new type of knotters.
基金Supported by the National Key Research and Development Program of China(Grant No.2019YFB1309600)the National Natural Science Foundation of China(Grant Nos.51775011&91748201).
文摘Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.However,the buffer effect of most bio-robots is not satisfactory owing to the simple design of their buffer systems.In this paper,a physiological analysis of the ruminant musculoskeletal system is presented to explain the intrinsic buffer mechanism of motion.Based on the physical buffer parts of the ruminant limbs,the corresponding bionic mappings were determined.These mappings were used to guide the mechanism design of the robot multistage buffer system.The multistage buffer system includes two main buffer mechanisms:the first stage and the second stage.The buffer mechanism analysis of the first stage and multiple stages is discussed in theory to compare the effects between the normal single buffer system and the novel multistage buffer system.Then,the detailed mechanical structure of the limbs was designed based on the limb mechanism design.To further verify the superior efficacy of the multistage buffer system,the corresponding walking simulation experiments were conducted after the virtual prototype of a quadruped robot with a novel limb was built completely.Both theoretical analysis and simulation experiments prove that the bionic robot design with the novel multistage buffer system achieves better motion performance than the traditional robot buffer design and can be regarded as the design template of the robot limb.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
文摘When an oceanographic vessel is sailing, the currents near the surface of ship hull are rapid, making it hard to meet the environmental requirements of scientific observation equipment. To guarantee the installation space and environmental requirements of the observation equipment, the drop keel system was proposed for the first time for ocean-graphic ships at China, to avoid the traditional "rudder-shaft" type fin keel's disadvantage. The research study will examine the operational mechanism and functions of the drop keel system, the operating conditions of the fin keel to determine the driver method and its arrangement, and the locking method of the fin keel underwater. The research wilI also provide some general designs for analyzing the best plan for the drop keel system.
基金Supported by National Natural Science Foundation of China(Grant No.51375288)Science and Technology Program of Guangdong Province of China(Grant No.2020ST004)+1 种基金Department of Education of Guangdong Province of China(Grant No.2017KZDXM036and Special Project for Science and Technology Innovation Team of Foshan City of China(Grant No.2018IT100052).
文摘As for the complex operational tasks in the unstructured environment with narrow workspace and numerous obstacles,the traditional robots cannot accomplish these mentioned complex operational tasks and meet the dexterity demands.The hyper-redundant bionic robots can complete complex tasks in the unstructured environments by simulating the motion characteristics of the elephant’s trunk and octopus tentacles.Compared with traditional robots,the hyper-redundant bionic robots can accomplish complex tasks because of their flexible structure.A hyper-redundant elephant’s trunk robot(HRETR)with an open structure is developed in this paper.The content includes mechanical structure design,kinematic analysis,virtual prototype simulation,control system design,and prototype building.This design is inspired by the flexible motion of an elephant’s trunk,which is expansible and is composed of six unit modules,namely,3UPS-PS parallel in series.First,the mechanical design of the HRETR is completed according to the motion characteristics of an elephant’s trunk and based on the principle of mechanical bionic design.After that,the backbone mode method is used to establish the kinematic model of the robot.The simulation software SolidWorks and ADAMS are combined to analyze the kinematic characteristics when the trajectory of the end moving platform of the robot is assigned.With the help of ANSYS,the static stiffness of each component and the whole robot is analyzed.On this basis,the materials of the weak parts of the mechanical structure and the hardware are selected reasonably.Next,the extensible structures of software and hardware control system are constructed according to the modular and hierarchical design criteria.Finally,the prototype is built and its performance is tested.The proposed research provides a method for the design and development for the hyper-redundant bionic robot.
文摘Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below:
基金Sponsored by the National Natural Science Foudation of China(50905016)
文摘A kind of automatic shift schedule optimization method is provided for a tracked vehicle with hydrodynamic-mechanical transmission in order to improve its dynamic performance. A dynamic model of integrated hydrodynamic-mechanical transmission is built in MATLAB/Simdriveline environment, and an optimum shift schedule is derived by using iSight software to call the dynamic model above, then the shift schedule is achieved after optimization. The simulation results show that the method is significant to improve the dynamic performance and gear-shifting smoothness theoretically and practically.
文摘Aiming at the paraffin-deposition problem of a beam well, the automatic paraffin-controlling device is designed by making use of ratchet-pallet mechanism, cam mechanism and modern designing method. The device has four main functions: paraffin-controlling, paraffin removal, centralizing the pumping rod, and improving the safety of well tubing. This device integrates the advantages of the paraffin control, such as strong magnetic paraffin controlling and mechanical paraffin-cutting. Theoretical analysis shows that this device has fine working reliability. It turns out to be a new device which can solve the paraffin-deposition problem of a beam well economically and efficiently.
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
文摘The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.
基金Supported by State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008).
文摘The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology(Grant No.00JC14052)
文摘Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.