Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lin...Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.展开更多
文摘Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.