期刊文献+
共找到413篇文章
< 1 2 21 >
每页显示 20 50 100
Multi-Stage Multidisciplinary Design Optimization Method for Enhancing Complete Artillery Internal Ballistic Firing Performance
1
作者 Jipeng Xie Guolai Yang +1 位作者 Liqun Wang Lei Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期793-819,共27页
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ... To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method. 展开更多
关键词 ARTILLERY internal ballistics dynamics multi-stage optimization multi-disciplinary design optimization collaborative optimization
下载PDF
Reliability-based life-cycle cost seismic design optimization of coastal bridge piers with nonuniform corrosion using different materials
2
作者 Wu Xiangtong Yuan Wenting Guo Anxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期209-225,共17页
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun... Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design. 展开更多
关键词 reliability-based design optimization(RBDO) life-cycle cost(LCC) nonuniform corrosion coastal bridge pier REPAIR
下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
3
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 Random forest reliability-based design optimization ensemble learning machine learning
下载PDF
A Blade Altering Toolbox for Automating Rotor Design Optimization
4
作者 Akiva Wernick Jen-Ping Chen 《Communications on Applied Mathematics and Computation》 EI 2024年第1期688-704,共17页
The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s... The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure. 展开更多
关键词 Mesh reconstruction Mesh alteration Rotor alteration design optimization
下载PDF
A Multiscale Reliability-Based Design Optimization Method for Carbon-Fiber-Reinforced Composite Drive Shafts
5
作者 Huile Zhang Shikang Li +3 位作者 Yurui Wu Pengpeng Zhi Wei Wang Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1975-1996,共22页
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta... Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components. 展开更多
关键词 Multiscale reliability-based design optimization carbon-fabric-reinforced composite drive shaft
下载PDF
An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation
6
作者 Yongqiang Guo Zhiyuan Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1855-1870,共16页
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of... In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method. 展开更多
关键词 Reliability-based multidisciplinary design optimization moment method saddlepoint approximate sequence optimization and reliability assessment performance measure approach
下载PDF
A Full Simulation Study for the Design Optimization of Open-Graded Pavement
7
作者 Andrea Umiliaco 《Journal of Civil Engineering and Architecture》 2023年第12期621-629,共9页
Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-g... Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-graded pavements are considered potentially to be effective solutions to avoid these forms of infiltration-related distress.The main property that influences the performance of HMA is the hydraulic permeability.The permeability is a function of several properties of HMA which make the process of mix design very complex and uncertain.In this paper,starting from different grading curves,we evaluate the dependence of the permeability by the size distribution of aggregates using a full numerical model that has yet been validated through experimental tests and theoretical calculations.The correlation between the grain size distributions and the hydraulic permeability is very useful in order to simplify and optimize the design of open-graded pavements. 展开更多
关键词 SIMULATION design optimization PAVEMENT
下载PDF
Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design 被引量:8
8
作者 Z.L.Huang Y.S.Zhou +2 位作者 C.Jiang J.Zheng X.Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期285-302,共18页
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici... Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method. 展开更多
关键词 Reliability-based design optimization(RBDO) Multidisciplinary design optimization(MDO) Incremental shifting vector(ISV) Decoupling algorithm Electronic product
下载PDF
Robust Multiobjective and Multidisciplinary Design Optimization of Electrical Drive Systems 被引量:1
9
作者 Gang Lei Tianshi Wang +1 位作者 Jianguo Zhu Youguang Guo 《CES Transactions on Electrical Machines and Systems》 2018年第4期409-416,共8页
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th... Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system. 展开更多
关键词 Electrical drive systems electrical machines multidisciplinary design optimization multiobjective optimization robust design optimization
下载PDF
Multidisciplinary Design Optimization of Vehicle Instrument Panel Based on Multi-objective Genetic Algorithm 被引量:14
10
作者 WANG Ping WU Guangqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期304-312,共9页
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut... Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO. 展开更多
关键词 instrument panel(IP) NVH SAFETY multidisciplinary design optimization multi-objective optimization
下载PDF
Effect of Variable Selection on Multidisciplinary Design Optimization:a Flight Vehicle Example 被引量:6
11
作者 J.Roshanian Z.Keshavarz 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期86-96,共11页
Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the... Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered, which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM determines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine. 展开更多
关键词 multidisciplinary design optimization sounding rocket central composite design response surface method equation of motion of a rocket
下载PDF
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:6
12
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization MULTI-OBJECTIVE
下载PDF
Reliability Simulation and Design Optimization for Mechanical Maintenance 被引量:4
13
作者 LIU Deshun HUANG Liangpei YUE Wenhui XU Xiaoyan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期594-601,共8页
Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in... Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with WeibuU probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor. 展开更多
关键词 maintenance RELIABILITY SIMULATION design optimization
下载PDF
Multidisciplinary Design Optimization of A Human Occupied Vehicle Based on Bi-Level Integrated System Collaborative Optimization 被引量:4
14
作者 赵敏 崔维成 李翔 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期599-610,共12页
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend... The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO. 展开更多
关键词 Multidisciplinary design optimization (MDO) Human Occupied Vehicle (HOD Bi-Level Integrated SystemCollaborative optimization (BLISCO) general performance
下载PDF
Uncertain Multidisciplinary Design Optimization on Next Generation Subsea Production System by Using Surrogate Model and Interval Method 被引量:2
15
作者 WU Jia-hao ZHEN Xing-wei +1 位作者 LIU Gang HUANG Yi 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期609-621,共13页
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which... The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former. 展开更多
关键词 next generation subsea production system multidisciplinary design optimization uncertain optimization collaborative optimization surrogate model interval method
下载PDF
Design optimization of composite egg-shaped submersible pressure hull for minimum buoyancy factor 被引量:2
16
作者 Muhammad Imran Dongyan Shi +2 位作者 Lili Tong Hafiz Muhammad Waqas Muqeem Uddin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1817-1832,共16页
This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of ... This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull. 展开更多
关键词 Composite egg-shaped pressure hull design optimization Buoyancy factor Material failure Buckling instability
下载PDF
Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling 被引量:9
17
作者 JU Yaping ZHANG Chuhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期301-314,共14页
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simpli... Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors. 展开更多
关键词 centrifugal impeller robust design optimization surface roughness uncertainty analysis
下载PDF
Reliable Space Pursuing for Reliability-based Design Optimization with Black-box Performance Functions 被引量:2
18
作者 SHAN Songqing WANG G Gary 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期27-35,共9页
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr... Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method. 展开更多
关键词 Reliability based design optimization black-box function reliable design space
下载PDF
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
19
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
下载PDF
Reliability Based Design Optimization of Aero-Engine Spindle Ball Bearings 被引量:2
20
作者 杨静 孟德彪 +2 位作者 张小玲 汪忠来 许焕卫 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期853-855,共3页
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit... Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution. 展开更多
关键词 aero-engine spindle ball bearing complex stresses reliability based design optimization structure design
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部