Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC...Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.展开更多
This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer...This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.展开更多
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf...Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de...Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.展开更多
As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interfac...As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.展开更多
Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern ...Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology.展开更多
Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form t...Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.展开更多
Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stabili...Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stability by avoiding unwanted liquid-phase chemical reactions.Among the different types of SSEs,the garnet-type electrolytes witness a rapid development and are considered as one of the top candidates to pair with Li metal due to their high ionic conductivity,thermal,and electrochemical stability.However,the large resistances at the interface between garnet-type electrolytes and cathode/anode are the major bottlenecks for delivering desirable electrochemical performances of all-solid-state batteries(SSBs).The electrolyte/anode interface also suffers from metallic dendrite formation,leading to rapid performance degradation.This is a fundamental material challenge due to the poor contact and wettability between garnet-type electrolytes with electrode materials.Here,we summarize and analyze the recent contributions in mitigating such materials challenges at the interface.Strategies used to address these challenges are divided into different categories with regard to their working principles.On one hand,progress has been made in the anode/garnet interface,such as the successful application of Li-alloy anode and different artificial interlayers,significantly improving interfacial performance.On the other hand,the desired cathode/garnet interface is still hard to reach due to the complex chemical and physical structure at the cathode.The common methods used are nanostructured cathode host and sintering additives for increasing the contact area.On the basis of this information,we present our views on the remaining challenges and future research of electrode/garnet interface.This review not only motivates the need for further understanding of the fundamentals,stability,and modifications of the garnet/electrode interfaces but also provides guidelines for the future design of the interface for SSB.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the s...As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and Fo...Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and FoxPro database, namely the communication problem between two separate programs under the Windows environment and to generate the multimedia interface which is consistent with the status and requests for the management information system, namely the problem that how to establish multimedia interface design.展开更多
Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- M...Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.展开更多
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of light...The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.展开更多
This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on...This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.展开更多
The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite elemen...The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite element simulation study was applied on three commonly used commercial dental implant systems: model I, the reduced-diameter 3i implant system (West Palm Beach, FL, USA) with a hex and a 12-point double internal hexagonal connection; model II, the Semados implant system (Bego, Bremen, Germany) with combination of a conical (45° taper) and internal hexagonal connection; and model III, the Br,~nemark implant system (Nobel Biocare, Gothenburg, Sweden) with external hexagonal connection. In simulation, a force of 170 N with 45°oblique to the longitudinal axis of the implant was loaded to the top surface of the abutment. It has been found from the strength and stiffness analysis that the 3i implant system has the lowest maximum yon Mises stress, prirlcipal stress and displacement, while the Br^nemark implant system has the highest. It was concluded from our preliminary study using nonlinear FEA that the reduced-diameter 3i implant system with a hex and a 12-point double internal hexagonal connection had a better stress distribution, and produced a smaller displacement than the other two implant systems.展开更多
To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over th...To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over the past 30 years reported in this paper suggests that Gesture Controlled User Interfaces (GCUI) now provide realistic and affordable opportunities, which may be appropriate for older and disabled people. We have developed a GCUI prototype application, called Open Gesture, to help users carry out everyday activities such as making phone calls, controlling their television and performing mathematical calculations. Open Gesture uses simple hand gestures to perform a diverse range of tasks via a television interface. This paper describes Open Gesture and reports its usability evaluation. We conclude that this inclusive technology offers some potential to improve the independence and quality of life of older and disabled users along with general users, although there remain significant challenges to be overcome.展开更多
The development of software as a service represents a great advantage for the users of cloud computing, such as users of small, medium or large organizations. All these users possess different characteristics, which m...The development of software as a service represents a great advantage for the users of cloud computing, such as users of small, medium or large organizations. All these users possess different characteristics, which must be taken into account as reference for the interface development of a software product. This paper considers the element of a user experience model, with the purpose of getting to know the different features that must be taken into account during the development of software as a service. This also involves the participation of different types of users of the SaaS layer model together with the users’ interaction skills level. This paper offers a framework of the involvement actors in the design of a software interface as a service, with the objective of identifying their participation outside and within the organization. The purpose is to create an interface centered on the user, involving clients and experts to work collaboratively;and get usable software as a service application.展开更多
Interactive digital television is at early stage as regards the interface design, especially in business transactions (t-commerce). Current attempts to transpose the problem related to linearity of narrative and tem...Interactive digital television is at early stage as regards the interface design, especially in business transactions (t-commerce). Current attempts to transpose the problem related to linearity of narrative and temporal flows and audiovisual content obstruction by the interactive layer, although pointing out design perspectives--in addition to the structural and visual web patterns--are still insufficient as regards the design of interfaces connected and converged for t-commerce applications. This article considers that these problems arise from the structural basis that support television scripts and streamings. In this sense, this article proposes the hybridization between the linear model, inherited from analogue condition, and nonlinear model, intrinsic to digital media, as a methodological strategy aiming to strength the creation of interactive audiovisual content connected and convergent for this context.展开更多
文摘Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.
文摘This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.
基金National Natural Science Foundation of China(52073253)。
文摘Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
文摘Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.
文摘As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.
基金financially supported by the National Natural Science Foundation of China(22075211 and 51971157)City University of Hong Kong Donation Research Grant(DON-RMG No.9229021)Innovation Project of Guangxi Graduate Education(YCBZ2023009).
文摘Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology.
文摘Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.
基金Engineering and Physical Sciences Research Council,Grant/Award Number:EP/S018204/1。
文摘Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stability by avoiding unwanted liquid-phase chemical reactions.Among the different types of SSEs,the garnet-type electrolytes witness a rapid development and are considered as one of the top candidates to pair with Li metal due to their high ionic conductivity,thermal,and electrochemical stability.However,the large resistances at the interface between garnet-type electrolytes and cathode/anode are the major bottlenecks for delivering desirable electrochemical performances of all-solid-state batteries(SSBs).The electrolyte/anode interface also suffers from metallic dendrite formation,leading to rapid performance degradation.This is a fundamental material challenge due to the poor contact and wettability between garnet-type electrolytes with electrode materials.Here,we summarize and analyze the recent contributions in mitigating such materials challenges at the interface.Strategies used to address these challenges are divided into different categories with regard to their working principles.On one hand,progress has been made in the anode/garnet interface,such as the successful application of Li-alloy anode and different artificial interlayers,significantly improving interfacial performance.On the other hand,the desired cathode/garnet interface is still hard to reach due to the complex chemical and physical structure at the cathode.The common methods used are nanostructured cathode host and sintering additives for increasing the contact area.On the basis of this information,we present our views on the remaining challenges and future research of electrode/garnet interface.This review not only motivates the need for further understanding of the fundamentals,stability,and modifications of the garnet/electrode interfaces but also provides guidelines for the future design of the interface for SSB.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
文摘As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
文摘Using multimedia writing tools ‘Author ware' for Windows 3.0b18, and making a multimedia interface for a simple interface generated by FoxPro 2.5B, mainly to solve how to connect an interface with Author ware and FoxPro database, namely the communication problem between two separate programs under the Windows environment and to generate the multimedia interface which is consistent with the status and requests for the management information system, namely the problem that how to establish multimedia interface design.
文摘Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0703500)the National Natural Science Foundation of China(Nos.52188101,52102153,52072029,51991340,51991342,51972022)+1 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(B14003)the Fundamental Research Funds for Central Universities(FRF-TP-18-001C1).
文摘The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
文摘This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.
基金supported by Medical Science Foundation of Health Department (under contract No. H201034)Six Talent Summit Foundation of Jiangsu Province, China (under contract No. 2010-WS081)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite element simulation study was applied on three commonly used commercial dental implant systems: model I, the reduced-diameter 3i implant system (West Palm Beach, FL, USA) with a hex and a 12-point double internal hexagonal connection; model II, the Semados implant system (Bego, Bremen, Germany) with combination of a conical (45° taper) and internal hexagonal connection; and model III, the Br,~nemark implant system (Nobel Biocare, Gothenburg, Sweden) with external hexagonal connection. In simulation, a force of 170 N with 45°oblique to the longitudinal axis of the implant was loaded to the top surface of the abutment. It has been found from the strength and stiffness analysis that the 3i implant system has the lowest maximum yon Mises stress, prirlcipal stress and displacement, while the Br^nemark implant system has the highest. It was concluded from our preliminary study using nonlinear FEA that the reduced-diameter 3i implant system with a hex and a 12-point double internal hexagonal connection had a better stress distribution, and produced a smaller displacement than the other two implant systems.
文摘To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over the past 30 years reported in this paper suggests that Gesture Controlled User Interfaces (GCUI) now provide realistic and affordable opportunities, which may be appropriate for older and disabled people. We have developed a GCUI prototype application, called Open Gesture, to help users carry out everyday activities such as making phone calls, controlling their television and performing mathematical calculations. Open Gesture uses simple hand gestures to perform a diverse range of tasks via a television interface. This paper describes Open Gesture and reports its usability evaluation. We conclude that this inclusive technology offers some potential to improve the independence and quality of life of older and disabled users along with general users, although there remain significant challenges to be overcome.
文摘The development of software as a service represents a great advantage for the users of cloud computing, such as users of small, medium or large organizations. All these users possess different characteristics, which must be taken into account as reference for the interface development of a software product. This paper considers the element of a user experience model, with the purpose of getting to know the different features that must be taken into account during the development of software as a service. This also involves the participation of different types of users of the SaaS layer model together with the users’ interaction skills level. This paper offers a framework of the involvement actors in the design of a software interface as a service, with the objective of identifying their participation outside and within the organization. The purpose is to create an interface centered on the user, involving clients and experts to work collaboratively;and get usable software as a service application.
文摘Interactive digital television is at early stage as regards the interface design, especially in business transactions (t-commerce). Current attempts to transpose the problem related to linearity of narrative and temporal flows and audiovisual content obstruction by the interactive layer, although pointing out design perspectives--in addition to the structural and visual web patterns--are still insufficient as regards the design of interfaces connected and converged for t-commerce applications. This article considers that these problems arise from the structural basis that support television scripts and streamings. In this sense, this article proposes the hybridization between the linear model, inherited from analogue condition, and nonlinear model, intrinsic to digital media, as a methodological strategy aiming to strength the creation of interactive audiovisual content connected and convergent for this context.