The potential of Near Infrared Spectroscopy (NIRS) in quality control of Traditional Chinese Medicine has been evaluated. This study focuses on a rapid and non-destructive quantitative method for the determination of ...The potential of Near Infrared Spectroscopy (NIRS) in quality control of Traditional Chinese Medicine has been evaluated. This study focuses on a rapid and non-destructive quantitative method for the determination of schaftoside acid content in Desmodium styracifolium by near-infrared spectroscopy. The schaftoside acid contents of 103 samples were determined by HPLC. The NIRS quantitative model of the ethanol extracts content was performed by partial least-squares (PLS) regression as linear regression with analysis values as calibration reference using 2nd derivative method as spectral preprocessing options. The model was verified by internal cross validation and external predictive validation with 22 Desmodium styracifolium samples. The correlation coefficients (r), the root-mean-square error of calibration (RMSEC), the root-mean-square error of prediction (RMSEP) and the root-mean-square error of cross-validation (RMSECV) of the calibration model for ethanol extracts content were 0.97201, 0.147, 0.162 and 0.433, respectively. The average recovery was 99.82%, and t-test showed that P > 0.5. Precision and repeatability RSD were 1.75% and 1.17%, RPD > 2.5. The data obtained from results showed that calibration model of NIRS was verified to be reliable, suggesting that the quantitative NIR models can be qualified to accurately quantify the ethanol extracts content of Desmodium styracifolium rapidly.展开更多
文摘The potential of Near Infrared Spectroscopy (NIRS) in quality control of Traditional Chinese Medicine has been evaluated. This study focuses on a rapid and non-destructive quantitative method for the determination of schaftoside acid content in Desmodium styracifolium by near-infrared spectroscopy. The schaftoside acid contents of 103 samples were determined by HPLC. The NIRS quantitative model of the ethanol extracts content was performed by partial least-squares (PLS) regression as linear regression with analysis values as calibration reference using 2nd derivative method as spectral preprocessing options. The model was verified by internal cross validation and external predictive validation with 22 Desmodium styracifolium samples. The correlation coefficients (r), the root-mean-square error of calibration (RMSEC), the root-mean-square error of prediction (RMSEP) and the root-mean-square error of cross-validation (RMSECV) of the calibration model for ethanol extracts content were 0.97201, 0.147, 0.162 and 0.433, respectively. The average recovery was 99.82%, and t-test showed that P > 0.5. Precision and repeatability RSD were 1.75% and 1.17%, RPD > 2.5. The data obtained from results showed that calibration model of NIRS was verified to be reliable, suggesting that the quantitative NIR models can be qualified to accurately quantify the ethanol extracts content of Desmodium styracifolium rapidly.