In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated b...In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated by faults. Characteristics of the block include a dense well network, thin reservoirs, complicated horizontal relationships, and small velocity difference between reservoir and non-reservoir. Therefore, it is difficult to conduct detailed reservoir description for subsequent development project adjustment. We demonstrate a stochastic seismic inversion which aims at detailed reservoir description. It is a technology which utilizes multiple wells, seismic data, and geological calibration and integrates with 3D structural interpretation results to build a 3D multi-fault detailed and constrained geological model. On this basis, we adopted stochastic seismic inversion to conduct a multi-stratum parameters inversion such as impedance and lithology. As a result, thin interbedded strata in the block were well resolved and the results demonstrated the importance of detailed reservoir inversion for oilfield development.展开更多
文摘In the Ken 71 development block, fluvial facies of the Neogene Guantao Formation and delta facies of the Paleogene Dongying Formation are the main pay beds. It is a multiple oil and water system which is complicated by faults. Characteristics of the block include a dense well network, thin reservoirs, complicated horizontal relationships, and small velocity difference between reservoir and non-reservoir. Therefore, it is difficult to conduct detailed reservoir description for subsequent development project adjustment. We demonstrate a stochastic seismic inversion which aims at detailed reservoir description. It is a technology which utilizes multiple wells, seismic data, and geological calibration and integrates with 3D structural interpretation results to build a 3D multi-fault detailed and constrained geological model. On this basis, we adopted stochastic seismic inversion to conduct a multi-stratum parameters inversion such as impedance and lithology. As a result, thin interbedded strata in the block were well resolved and the results demonstrated the importance of detailed reservoir inversion for oilfield development.