Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-bas...The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.展开更多
A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects bas...A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.展开更多
The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage...The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.展开更多
With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole sy...With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole system.In this paper,we analyze and design the detection algorithm of surgical instrument location mark,and estimate the posture of surgical instrument.In addition,we optimized the pose by remapping.Finally,the algorithm of location mark detection proposed in this paper and the posture analysis data of surgical instruments are verified and analyzed through experiments.The final result shows a high accuracy.展开更多
With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record...With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level).展开更多
We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximati...We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.展开更多
In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by f...In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.展开更多
The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is...The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.展开更多
With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the pr...With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.展开更多
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith...With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.展开更多
A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also t...A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.展开更多
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error...Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.展开更多
An adaptive MIMO detection algorithm for LTE-A system which is based on sphere detection is proposed in this paper. The proposed algorithm uses M-algorithm for reference to remove unreliable constellation candidates b...An adaptive MIMO detection algorithm for LTE-A system which is based on sphere detection is proposed in this paper. The proposed algorithm uses M-algorithm for reference to remove unreliable constellation candidates before search, and the number of constellation reservation is adaptively adjusted according to SNR. Simulations of LTE-A downlink show that the BER performance of the proposed detection algorithm is nearly the same as maximum likelihood (ML) detection algorithm. However, the complexity is reduced by about 30% compared with full constellation sphere detection.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
As the cash register system gradually prevailed in shopping malls, detecting the abnormal status of the cash register system has gradually become a hotspot issue. This paper analyzes the transaction data of a shopping...As the cash register system gradually prevailed in shopping malls, detecting the abnormal status of the cash register system has gradually become a hotspot issue. This paper analyzes the transaction data of a shopping mall. When calculating the degree of data difference, the coefficient of variation is used as the attribute weight;the weighted Euclidean distance is used to calculate the degree of difference;and k-means clustering is used to classify different time periods. It applies the LOF algorithm to detect the outlier degree of transaction data at each time period, sets the initial threshold to detect outliers, deletes the outliers, and then performs SAX detection on the data set. If it does not pass the test, then it will gradually expand the outlying domain and repeat the above process to optimize the outlier threshold to improve the sensitivity of detection algorithm and reduce false positives.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
文摘The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.
基金National Science and Technology Major Project of China(No.2016ZX04003001)。
文摘A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.
文摘The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.
基金supported by the Sichuan Science and Technology Program(2021YFQ0003).
文摘With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole system.In this paper,we analyze and design the detection algorithm of surgical instrument location mark,and estimate the posture of surgical instrument.In addition,we optimized the pose by remapping.Finally,the algorithm of location mark detection proposed in this paper and the posture analysis data of surgical instruments are verified and analyzed through experiments.The final result shows a high accuracy.
基金IIT Roorkee under the Faculty Initiation Grant No.100556
文摘With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level).
基金supported by Key Research Program of Frontier Science,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH014)the Yong Scientists Fund of the National Natural Science Foundation of China(Grant No.61205143)
文摘We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.
基金supported by Fund of National Science&Technology monumental projects under Grants NO.61401239,NO.2012-364-641-209
文摘In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.
基金supported by Guangdong Provincial Natural Science Foundation of China (7005833)
文摘The integrated circuit chip with high performance has a high sensitivity to the defects in manufacturing environments.When there are defects on a wafer,the defects may lead to the degradation of chip performance.It is necessary to design effective detection approaches for the defects in order to ensure the reliability of wafer.In this paper,a new method based on image boundary extraction is presented for the detection of defects on a wafer.The method uses island model genetic algorithms to perform the segmentation of wafer images,and gets the optimal threshold values.The island model genetic algorithm uses two distinct subpopulations,it is a coarse grain parallel model.The individuals migration can occur between the two subpopulations to share genetic materials.A lot of experimental results show that the defect detection method proposed in this paper can obtain the features of defects effectively.
基金supported by the Aeronautical Science Foundation of China(20111052010)the Jiangsu Graduates Innovation Project (CXZZ120163)+1 种基金the "333" Project of Jiangsu Provincethe Qing Lan Project of Jiangsu Province
文摘With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm.
基金supported by the State Grid Liaoning Electric Power Supply CO, LTDthe financial support for the “Key Technology and Application Research of the Self-Service Grid Big Data Governance (No.SGLNXT00YJJS1800110)”
文摘With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61622107 and 61471149)
文摘A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.
文摘Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.
文摘An adaptive MIMO detection algorithm for LTE-A system which is based on sphere detection is proposed in this paper. The proposed algorithm uses M-algorithm for reference to remove unreliable constellation candidates before search, and the number of constellation reservation is adaptively adjusted according to SNR. Simulations of LTE-A downlink show that the BER performance of the proposed detection algorithm is nearly the same as maximum likelihood (ML) detection algorithm. However, the complexity is reduced by about 30% compared with full constellation sphere detection.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
文摘As the cash register system gradually prevailed in shopping malls, detecting the abnormal status of the cash register system has gradually become a hotspot issue. This paper analyzes the transaction data of a shopping mall. When calculating the degree of data difference, the coefficient of variation is used as the attribute weight;the weighted Euclidean distance is used to calculate the degree of difference;and k-means clustering is used to classify different time periods. It applies the LOF algorithm to detect the outlier degree of transaction data at each time period, sets the initial threshold to detect outliers, deletes the outliers, and then performs SAX detection on the data set. If it does not pass the test, then it will gradually expand the outlying domain and repeat the above process to optimize the outlier threshold to improve the sensitivity of detection algorithm and reduce false positives.