Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to r...As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed.展开更多
This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework i...This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.展开更多
Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability,...Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost of decreasing 2.7%–8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost.展开更多
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It a...Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.展开更多
Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will...Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance.展开更多
Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope...Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.展开更多
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys...Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.展开更多
Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,espec...Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,especially during emergency situations and health crises.With huge amounts of content being posted to social media every second during these situations,it becomes very difficult to detect fake news(rumors)that poses threats to the stability and sustainability of the healthcare sector.A rumor is defined as a statement for which truthfulness has not been verified.During COVID 19,people found difficulty in obtaining the most truthful news easily because of the huge amount of unverified information on social media.Several methods have been applied for detecting rumors and tracking their sources for COVID 19-related information.However,very few studies have been conducted for this purpose for the Arabic language,which has unique characteristics.Therefore,this paper proposes a comprehensive approach which includes two phases:detection and tracking.In the detection phase of the study carried out,several standalone and ensemble machine learning methods were applied on the Arcov-19 dataset.A new detection model was used which combined two models:The Genetic Algorithm Based Support Vector Machine(that works on users’and tweets’features)and the stacking ensemble method(that works on tweets’texts).In the tracking phase,several similarity-based techniques were used to obtain the top 1%of similar tweets to a target tweet/post,which helped to find the source of the rumors.The experiments showed interesting results in terms of accuracy,precision,recall and F1-Score for rumor detection(the accuracy reached 92.63%),and showed interesting findings in the tracking phase,in terms of ROUGE L precision,recall and F1-Score for similarity techniques.展开更多
Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challen...Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.展开更多
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg...In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.展开更多
Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,...Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution.In order to compensate for the low detection accuracy,incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR,in this paper,an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles.By employing the Unscented Kalman Filter,Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle.Finally,the real vehicle test under various driving environment scenarios is carried out.The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy.Compared with a single sensor,it has obvious advantages and can improve the intelligence level of autonomous cars.展开更多
There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods...There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.展开更多
Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition...Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition monitoring system is essential to avoid accidents and heavy losses.Generally,the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment.Therefore,in this paper,we present the development of a novel embedded system prototype for condition monitoring of railway track.The proposed prototype system works in real-time by acquiring railway track surface images and performing two tasks a)detect deformation(i.e.,faults)like squats,shelling,and spalling using the contour feature algorithm and b)the vibration signature on that faulty spot by synchronizing acceleration and image data.A new illumination scheme is also proposed to avoid the sunlight reflection that badly affects the image acquisition process.The contour detection algorithm is applied here to detect the uneven shapes and discontinuities in the geometrical structure of the railway track surface,which ultimately detects unhealthy regions.It works by converting Red,Green,and Blue(RGB)images into binary images,which distinguishes the unhealthy regions by making them white color while the healthy regions in black color.We have used the multiprocessing technique to overcome the massive processing and memory issues.This embedded system is developed on Raspberry Pi by interfacing a vision camera,an accelerometer,a proximity sensor,and a Global Positioning System(GPS)sensors(i.e.,multi-sensors).The developed embedded system prototype is tested in real-time onsite by installing it on a Railway Inspection Trolley(RIT),which runs at an average speed of 15 km/h.The functional verification of the proposed system is done successfully by detecting and recording the various railway track surface faults.An unhealthy frame’s onsite detection processing time was recorded at approximately 25.6ms.The proposed system can synchronize the acceleration data on specific railway track deformation.The proposed novel embedded system may be beneficial for detecting faults to overcome the conventional manual railway track condition monitoring,which is still being practiced in various developing or underdeveloped countries.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
In this paper,both the integrity monitoring and fault detection and exclusion(FDE)mechanisms are incorporated into the vector tracking loop(VTL)architecture of the Global Positioning System(GPS)receiver for reliabilit...In this paper,both the integrity monitoring and fault detection and exclusion(FDE)mechanisms are incorporated into the vector tracking loop(VTL)architecture of the Global Positioning System(GPS)receiver for reliability enhancement.For the VTL,the tasks of signal tracking and navigation state estimation no longer process separately and a single extended Kalman filter(EKF)is employed to simultaneously track the received signals and estimate the receiver’s position,velocity,etc.In contrast to the scalar tracking loop(STL)which utilizes the independent parallel tracking loop approach,the VTL technique is beneficial from the correlation of each satellite signal and user dynamics.The VTL approach provides several important advantages.One of the merits is that the tracking loop can be assisted for overcoming the problem of signal blockage.Although the VTL architectures provide several important advantages,they suffer some fundamental drawbacks.For example,the errors in the navigation solutions may degrade the tracking accuracy.The most significant drawback is that failure of tracking in one channel may affect the entire tracking loop and possibly lead to loss of lock.For reliability enhancement,the EKF based integrity monitoring and FDE algorithms are developed to prevent the error from spreading into the entire tracking loop.The integrity monitoring is utilized to check the possible fault in the pseudorange and the pseudorange rate,followed by the FDE mechanism employed to exclude the abnormal satellite signals.Performance assessment and evaluation for the proposed approach will be presented.展开更多
A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow ...A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (...An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.展开更多
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
文摘As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed.
基金supported by the National Natural Science Foundation of China(Grant No.51009040)Heilongjiang Postdoctoral Fund(Grant No.LBH-Z11205)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2011AA09A106)the China Postdoctoral Science Foundation(Grant No.2012M510928)
文摘This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.
基金Supported by Open Research Fund of State Key Laboratory of Advanced Technology for Vehicle Body Design & Manufacture of China (Grant No.61075002)Hunan Provincial Natural Science Foundation of China (Grant No.13JJ4033)
文摘Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost of decreasing 2.7%–8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost.
基金the Framework of International Cooperation Program managed by the National Research Foundation of Korea(2019K1A3A1A8011295711).
文摘Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.
基金Supported by the National Natural Science Foundation of China(No.61502312)the Fundamental Research Funds for the Central Universities(No.2017BQ024)+1 种基金the Natural Science Foundation of Guangdong Province(No.2017A030310428)the Science and Technology Programm of Guangzhou(No.201806020075,20180210025)
文摘Single-pass is commonly used in topic detection and tracking( TDT) due to its simplicity,high efficiency and low cost. When dealing with large-scale data,time cost will increase sharply and clustering performance will be affected greatly. Aiming at this problem,hierarchical clustering algorithm based on single-pass is proposed,which is inspired by hierarchical and concurrent ideas to divide clustering process into three stages. News reports are classified into different categories firstly.Then there are twice single-pass clustering processes in the same category,and one agglomerative clustering among different categories. In addition,for semantic similarity in news reports,topic model is improved based on named entities. Experimental results show that the proposed method can effectively accelerate the process as well as improve the performance.
文摘Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods.
基金supported by the National Natural Science Foundation of China(61601504)。
文摘Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.
基金This research was funded by the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University,Saudi Arabia,Grant No.(20-12-18-013).
文摘Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,especially during emergency situations and health crises.With huge amounts of content being posted to social media every second during these situations,it becomes very difficult to detect fake news(rumors)that poses threats to the stability and sustainability of the healthcare sector.A rumor is defined as a statement for which truthfulness has not been verified.During COVID 19,people found difficulty in obtaining the most truthful news easily because of the huge amount of unverified information on social media.Several methods have been applied for detecting rumors and tracking their sources for COVID 19-related information.However,very few studies have been conducted for this purpose for the Arabic language,which has unique characteristics.Therefore,this paper proposes a comprehensive approach which includes two phases:detection and tracking.In the detection phase of the study carried out,several standalone and ensemble machine learning methods were applied on the Arcov-19 dataset.A new detection model was used which combined two models:The Genetic Algorithm Based Support Vector Machine(that works on users’and tweets’features)and the stacking ensemble method(that works on tweets’texts).In the tracking phase,several similarity-based techniques were used to obtain the top 1%of similar tweets to a target tweet/post,which helped to find the source of the rumors.The experiments showed interesting results in terms of accuracy,precision,recall and F1-Score for rumor detection(the accuracy reached 92.63%),and showed interesting findings in the tracking phase,in terms of ROUGE L precision,recall and F1-Score for similarity techniques.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2023-RS-2022-00156326)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation).
文摘Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.U20A20333,61906076,51875255,U1764257,U1762264),Jiangsu Provincial Natural Science Foundation of China(Grant Nos.BK20180100,BK20190853)Six Talent Peaks Project of Jiangsu Province(Grant No.2018-TD-GDZB-022)+1 种基金China Postdoctoral Science Foundation(Grant No.2020T130258)Jiangsu Provincial Key Research and Development Program of China(Grant No.BE2020083-2).
文摘Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution.In order to compensate for the low detection accuracy,incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR,in this paper,an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles.By employing the Unscented Kalman Filter,Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle.Finally,the real vehicle test under various driving environment scenarios is carried out.The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy.Compared with a single sensor,it has obvious advantages and can improve the intelligence level of autonomous cars.
基金National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2018A0303130188)+1 种基金Guangdong Provincial Science and Technology Special Funds Project of China(Grant No.190805145540361)Special Projects in Key Fields of Colleges and Universities in Guangdong Province of China(Grant No.2020ZDZX2005).
文摘There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.
基金supported by the NCRA project of the Higher Education Commission Pakistan.
文摘Derailment of trains is not unusual all around the world,especially in developing countries,due to unidentified track or rolling stock faults that cause massive casualties each year.For this purpose,a proper condition monitoring system is essential to avoid accidents and heavy losses.Generally,the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment.Therefore,in this paper,we present the development of a novel embedded system prototype for condition monitoring of railway track.The proposed prototype system works in real-time by acquiring railway track surface images and performing two tasks a)detect deformation(i.e.,faults)like squats,shelling,and spalling using the contour feature algorithm and b)the vibration signature on that faulty spot by synchronizing acceleration and image data.A new illumination scheme is also proposed to avoid the sunlight reflection that badly affects the image acquisition process.The contour detection algorithm is applied here to detect the uneven shapes and discontinuities in the geometrical structure of the railway track surface,which ultimately detects unhealthy regions.It works by converting Red,Green,and Blue(RGB)images into binary images,which distinguishes the unhealthy regions by making them white color while the healthy regions in black color.We have used the multiprocessing technique to overcome the massive processing and memory issues.This embedded system is developed on Raspberry Pi by interfacing a vision camera,an accelerometer,a proximity sensor,and a Global Positioning System(GPS)sensors(i.e.,multi-sensors).The developed embedded system prototype is tested in real-time onsite by installing it on a Railway Inspection Trolley(RIT),which runs at an average speed of 15 km/h.The functional verification of the proposed system is done successfully by detecting and recording the various railway track surface faults.An unhealthy frame’s onsite detection processing time was recorded at approximately 25.6ms.The proposed system can synchronize the acceleration data on specific railway track deformation.The proposed novel embedded system may be beneficial for detecting faults to overcome the conventional manual railway track condition monitoring,which is still being practiced in various developing or underdeveloped countries.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金supported by the Ministry of Science and Technology,Taiwan[Grant numbers MOST 104-2221-E-019-026-MY3 and MOST 109-2221-E019-010].
文摘In this paper,both the integrity monitoring and fault detection and exclusion(FDE)mechanisms are incorporated into the vector tracking loop(VTL)architecture of the Global Positioning System(GPS)receiver for reliability enhancement.For the VTL,the tasks of signal tracking and navigation state estimation no longer process separately and a single extended Kalman filter(EKF)is employed to simultaneously track the received signals and estimate the receiver’s position,velocity,etc.In contrast to the scalar tracking loop(STL)which utilizes the independent parallel tracking loop approach,the VTL technique is beneficial from the correlation of each satellite signal and user dynamics.The VTL approach provides several important advantages.One of the merits is that the tracking loop can be assisted for overcoming the problem of signal blockage.Although the VTL architectures provide several important advantages,they suffer some fundamental drawbacks.For example,the errors in the navigation solutions may degrade the tracking accuracy.The most significant drawback is that failure of tracking in one channel may affect the entire tracking loop and possibly lead to loss of lock.For reliability enhancement,the EKF based integrity monitoring and FDE algorithms are developed to prevent the error from spreading into the entire tracking loop.The integrity monitoring is utilized to check the possible fault in the pseudorange and the pseudorange rate,followed by the FDE mechanism employed to exclude the abnormal satellite signals.Performance assessment and evaluation for the proposed approach will be presented.
基金Project(50778015)supported by the National Natural Science Foundation of ChinaProject(2012CB725403)supported by the Major State Basic Research Development Program of China
文摘A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
文摘An Unmanned Aircraft System (UAS) is an aircraft or ground station that can be either remote controlled manually or is capable of flying autonomously under the guidance of pre-programmed Global Positioning System (GPS) waypoint flight plans or more complex onboard intelligent systems. The UAS aircrafts have recently found extensive applications in military reconnaissance and surveillance, homeland security, precision agriculture, fire monitoring and analysis, and other different kinds of aids needed in disasters. Through surveillance videos captured by a UAS digital imaging payload over the interest areas, the corresponding UAS missions can be conducted. In this paper, the authors present an effective method to detect and extract architectural buildings under rural environment from UAS video sequences. The SIFT points are chosen as image features. The planar homography is adopted as the motion model between different image frames. The proposed algorithm is tested on real UAS video data.