Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new gener...Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon's low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9% for the negative elevation angle of 0.36° compared with the elevation angle of 0.49° . Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close sea wave clutter which interfered with the assessment of the typhoon structure at times. Assessing these advantages and disadvantages, some advantages for using negative elevation angle were discovered from the observation of the typhoons Haitang and Changmi, if the negative elevation angle with radar was selected reasonably in some conditions. As a result, a certain value arose for improving and monitoring the early warning system for typhoons, paying close attention to the detection of negative elevation angles.展开更多
In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concer...In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.展开更多
The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasi...The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and satellite EM technologies in earthquake studies, the amount of observed data from the alternating EM method increases rapidly and exponentially, so it is imperative to develop suitable and effective methods for processing and analyzing the influx of big data. This paper presents research on the self-adaptive filter and wavelet techniques and their applications to analyzing EM data obtained from ground measurements and satellite observations, respectively. Analysis results show that the self-adaptive filter method can identify both natural- and artificial-source EM signals, and enhance the ratio between signal and noise of EM field spectra, apparent resistivity, and others. The wavelet analysis is capable of detecting possible correlation between EM anomalies and seismic events. These techniques are effective in processing and analyzing massive data obtained from EM observations.展开更多
This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displac...This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction(toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin–streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After adding microbeads, the solution produces bright fluorescence, while microbeads have no obvious signal.Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1–40 nmol/L and reaches a detection limit of 0.3 nmol/L.? 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.Published by Elsevier B.V. All rights reserved.展开更多
基金funded by the Emphasis Opening Laboratory of Atmospheric Sounding, China Meteorological Administrationthe State Key Laboratory of Disaster Weather, Chinese Academy of Meteoro-logical Science (2007Y004)
文摘Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon's low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9% for the negative elevation angle of 0.36° compared with the elevation angle of 0.49° . Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close sea wave clutter which interfered with the assessment of the typhoon structure at times. Assessing these advantages and disadvantages, some advantages for using negative elevation angle were discovered from the observation of the typhoons Haitang and Changmi, if the negative elevation angle with radar was selected reasonably in some conditions. As a result, a certain value arose for improving and monitoring the early warning system for typhoons, paying close attention to the detection of negative elevation angles.
文摘In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41374077,41074047)CEA-NASCC Dragon Project Ⅲ(Grant No.10671)Special Public Benefit Program for Earthquake Study(Grant No.200808010)
文摘The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and satellite EM technologies in earthquake studies, the amount of observed data from the alternating EM method increases rapidly and exponentially, so it is imperative to develop suitable and effective methods for processing and analyzing the influx of big data. This paper presents research on the self-adaptive filter and wavelet techniques and their applications to analyzing EM data obtained from ground measurements and satellite observations, respectively. Analysis results show that the self-adaptive filter method can identify both natural- and artificial-source EM signals, and enhance the ratio between signal and noise of EM field spectra, apparent resistivity, and others. The wavelet analysis is capable of detecting possible correlation between EM anomalies and seismic events. These techniques are effective in processing and analyzing massive data obtained from EM observations.
基金supported by National Natural Science Foundation of China(No.21275043)National Basic Research Program of China under Grants(No.2009CB421601)
文摘This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction(toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin–streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After adding microbeads, the solution produces bright fluorescence, while microbeads have no obvious signal.Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1–40 nmol/L and reaches a detection limit of 0.3 nmol/L.? 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.Published by Elsevier B.V. All rights reserved.