The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,...The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.展开更多
Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as...Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.展开更多
基金This project is supported by National Natural Science Foundation of China(No. 10272007, No.60404017, No.10372009)Municipal Natural Science Foundation of Beijing, Clina(No.4052008).
文摘The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.
文摘Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.