Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing...Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.展开更多
Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that...Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that would identify and solve the problem. At present, we live in a world dominated by technology on a significant scale, major network coverage, high-end smart-phones, as long as there are great discoveries and improvements in AI. The combination of high-end smart-phones and computer vision via Deep Learning has made possible what can be defined as “smartphone-assisted disease diagnosis”. In the area of Deep Learning, multiple architecture models have been trained, some achieving performance reaching more than 99.53% [1]. In this study, we evaluate CNN’s architectures applying transfer learning and deep feature extraction. All the features obtained will also be classified by SVM and KNN. Our work is feasible by the use of the open source Plant Village Dataset. The result obtained shows that SVM is the best classifier for leaf’s diseases detection.展开更多
Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe prob...Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities,motivating our mission.Because of the large range of diseases,identifying and classifying diseases with human eyes is not only time-consuming and labor intensive,but also prone to being mistaken with a high error rate.Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and diagnosis.The proposed work describes a deep learning approach for detection plant disease.Therefore,we proposed a deep learning model strategy for detecting plant disease and classification of plant leaf diseases.In our research,we focused on detecting plant diseases in five crops divided into 25 different types of classes(wheat,cotton,grape,corn,and cucumbers).In this task,we used a public image database of healthy and diseased plant leaves acquired under realistic conditions.For our work,a deep convolutional neural model AlexNet and Particle Swarm optimization was trained for this task we found that the metrics(accuracy,specificity,Sensitivity,precision,and Fscore)of the tested deep learning networks achieves an accuracy of 98.83%,specificity of 98.56%,Sensitivity of 98.78%,precision of 98.67%,and F-score of 98.47%,demonstrating the feasibility of this approach.展开更多
The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectivene...The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.展开更多
The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information...The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information technology has increased.A sensing system is mandatory to detect rice diseases using Artificial Intelligence(AI).It is being adopted in all medical and plant sciences fields to access and measure the accuracy of results and detection while lowering the risk of diseases.Deep Neural Network(DNN)is a novel technique that will help detect disease present on a rice leave because DNN is also considered a state-of-the-art solution in image detection using sensing nodes.Further in this paper,the adoption of the mixed-method approach Deep Convolutional Neural Network(Deep CNN)has assisted the research in increasing the effectiveness of the proposed method.Deep CNN is used for image recognition and is a class of deep-learning neural networks.CNN is popular and mostly used in the field of image recognition.A dataset of images with three main leaf diseases is selected for training and testing the proposed model.After the image acquisition and preprocessing process,the Deep CNN model was trained to detect and classify three rice diseases(Brown spot,bacterial blight,and blast disease).The proposed model achieved 98.3%accuracy in comparison with similar state-of-the-art techniques.展开更多
In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manua...In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manual methods due to their capabilities of 3D scene representation in 2D plane.The capabilities of digital images along with utilization of machine learning methodologies are showing promising accuracies in many applications of prediction and pattern recognition.One of the application fields pertains to detection of diseases occurring in the plants,which are destroying the widespread fields.Traditionally the disease detection process was done by a domain expert using manual examination and laboratory tests.This is a tedious and time consuming process and does not suffice the accuracy levels.This creates a room for the research in developing automation based methods where the images captured through sensors and cameras will be used for detection of disease and control its spreading.The digital images captured from the field’s forms the dataset which trains the machine learning models to predict the nature of the disease.The accuracy of these models is greatly affected by the amount of noise and ailments present in the input images,appropriate segmentation methodology,feature vector development and the choice of machine learning algorithm.To ensure the high rated performance of the designed system the research is moving in a direction to fine tune each and every stage separately considering their dependencies on subsequent stages.Therefore the most optimum solution can be obtained by considering the image processing methodologies for improving the quality of image and then applying statistical methods for feature extraction and selection.The training vector thus developed is capable of presenting the relationship between the feature values and the target class.In this article,a highly accurate system model for detecting the diseases occurring in citrus fruits using a hybrid feature development approach is proposed.The overall improvement in terms of accuracy is measured and depicted.展开更多
A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure ...A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods.展开更多
Knowledge Management(KM)has become a dynamic concept for inquiry in research.The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related...Knowledge Management(KM)has become a dynamic concept for inquiry in research.The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related to a particular discipline,several KM frameworks have been designed to serve this purpose.This research aims to propose a Collaborative Knowledge Management(CKM)Framework that bridges gaps and overcomes weaknesses in existing frameworks.The paper also validates the framework by evaluating its effectiveness for the agriculture sector of Pakistan.A software LCWU aKMS was developed which serves as a practical implementation of the concepts behind the proposed CKMF framework.LCWU aKMS served as an effective system for rice leaf disease detection and identification.It aimed to enhance CKM through knowledge sharing,lessons learned,feedback on problem resolutions,help from co-workers,collaboration,and helping communities.Data were collected from 300 rice crop farmers by questionnaires based on hypotheses.Jennex Olfman model was used to estimate the effectiveness of CKMF.Various tests were performed including frequency measures of variables,Cronbach’s alpha reliability,and Pearson’s correlation.The research provided a KMS depicting KM and collaborative features.The disease detection module was evaluated using the precision and recall method and found to be 94.16%accurate.The system could replace the work of extension agents,making it a cost and time-effective initiative for farmer betterment.展开更多
Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ...Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.展开更多
The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accu...The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accurate diagnosis of the disorders is essential.Deep convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification tasks.However,it requires large training datasets and several parameters that need careful adjustment.The proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango leaves.This model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning techniques.The data loader also builds mini-batches for training the models to reduce training time.Finally,optimization approaches help increase the overall model’s efficiency and lower computing costs.MDCN employed on the MangoLeafBD Dataset consists of a total of 4,000 images.Following the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.展开更多
Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technolog...Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technology to improve productivity.Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity.Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost,approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert’s opinion.Deep learning-based computer vision techniques like Convolutional Neural Network(CNN)and traditional machine learning-based image classification approaches are being applied to identify plant diseases.In this paper,the CNN model is proposed for the classification of rice and potato plant leaf diseases.Rice leaves are diagnosed with bacterial blight,blast,brown spot and tungro diseases.Potato leaf images are classified into three classes:healthy leaves,early blight and late blight diseases.Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study.The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58%accuracy and potato leaves with 97.66%accuracy.The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine(SVM),K-Nearest Neighbors(KNN),Decision Tree and Random Forest.展开更多
Due to the high demand for mango and being the king of all fruits,it is the need of the hour to curb its diseases to fetch high returns.Automatic leaf disease segmentation and identification are still a challenge due ...Due to the high demand for mango and being the king of all fruits,it is the need of the hour to curb its diseases to fetch high returns.Automatic leaf disease segmentation and identification are still a challenge due to variations in symptoms.Accurate segmentation of the disease is the key prerequisite for any computer-aided system to recognize the diseases,i.e.,Anthracnose,apicalnecrosis,etc.,of a mango plant leaf.To solve this issue,we proposed a CNN based Fully-convolutional-network(FrCNnet)model for the segmentation of the diseased part of the mango leaf.The proposed FrCNnet directly learns the features of each pixel of the input data after applying some preprocessing techniques.We evaluated the proposed FrCNnet on the real-time dataset provided by the mango research institute,Multan,Pakistan.To evaluate the proposed model results,we compared the segmentation performance with the available state-of-the-art models,i.e.,Vgg16,Vgg-19,and Unet.Furthermore,the proposed model’s segmentation accuracy is 99.2%with a false negative rate(FNR)of 0.8%,which is much higher than the other models.We have concluded that by using a FrCNnet,the input image could learn better features that are more prominent and much specific,resulting in an improved and better segmentation performance and diseases’identification.Accordingly,an automated approach helps pathologists and mango growers detect and identify those diseases.展开更多
Hitherto,Rice(Oryza Sativa)has been one of the most demanding food crops in the world,cultivated in larger quantities,but loss in both quality and quantity of yield due to abiotic and biotic stresses has become a majo...Hitherto,Rice(Oryza Sativa)has been one of the most demanding food crops in the world,cultivated in larger quantities,but loss in both quality and quantity of yield due to abiotic and biotic stresses has become a major concern.During cultivation,the crops are most prone to biotic stresses such as bacterial,viral,fungal diseases and pests.These stresses can drastically damage the crop.Lately and erroneously recognized crop diseases can increase fertilizers costs and major yield loss which results in high financial loss and adverse impact on nation’s economy.The proven methods of molecular biology can provide accurate detection of pathogenic factors,but these methods are not accessible to the majority of the farmers,needs high costs or resources,and require domain knowledge to implement.Expert’s field inspection report provides precise crop diagnosis but continuous field inspection over the remotely placed agriculture fields is not feasible.Therefore,cost effective approach for early detection of diseases can help farmers to take necessary steps in time to boost up the crop production.Precision agriculture makes use of decision support systems built using Machine Learning(ML)or Deep Learning(DL)approaches to cut down heavy costs.Timely crop diagnosis process can be automated with the involvement of Computer Vision,Image Processing and Deep Learning(DL)based methods for more precise prediction in less cost and time.Latest research shows that more accurate image classification can be implemented using Deep Learning based Convolutional Neural Network(CNN)model.In this paper,we have proposed an automated Rice Disease Diagnosis System(RDDS)for timely,more accurate and detailed crop disease diagnosis,which consisting of two modules,they are Leaf Disease Identification(LDI)module for disease detection and Infection Intensity Estimation(IIE)module for disease severity analysis.The LDI module is based on the proposed novel RDD_CNN model that classified the eight most harmful and commonly occurring diseases,it has obtained the best test accuracy of 98.47%when compared to its first three versions.And the IIE module is designed for estimating identified disease’s intensity in terms of extent and stage of infection providing detailed and overall diagnosis report specially designed for Brown Spot disease.展开更多
Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)rays.If left untreated,these di...Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)rays.If left untreated,these diseases can have severe consequences and spread,especially among children.Early detection is crucial to prevent their spread and improve a patient’s chances of recovery.Dermatology,the branch of medicine dealing with skin diseases,faces challenges in accurately diagnosing these conditions due to the difficulty in identifying and distinguishing between different diseases based on their appearance,type of skin,and others.This study presents a method for detecting skin diseases using Deep Learning(DL),focusing on the most common diseases affecting children in Saudi Arabia due to the high UV value in most of the year,especially in the summer.The method utilizes various Convolutional Neural Network(CNN)architectures to classify skin conditions such as eczema,psoriasis,and ringworm.The proposed method demonstrates high accuracy rates of 99.99%and 97%using famous and effective transfer learning models MobileNet and DenseNet121,respectively.This illustrates the potential of DL in automating the detection of skin diseases and offers a promising approach for early diagnosis and treatment.展开更多
Worldwide cotton is the most profitable cash crop.Each year the production of this crop suffers because of several diseases.At an early stage,computerized methods are used for disease detection that may reduce the los...Worldwide cotton is the most profitable cash crop.Each year the production of this crop suffers because of several diseases.At an early stage,computerized methods are used for disease detection that may reduce the loss in the production of cotton.Although several methods are proposed for the detection of cotton diseases,however,still there are limitations because of low-quality images,size,shape,variations in orientation,and complex background.Due to these factors,there is a need for novel methods for features extraction/selection for the accurate cotton disease classification.Therefore in this research,an optimized features fusion-based model is proposed,in which two pre-trained architectures called EfficientNet-b0 and Inception-v3 are utilized to extract features,each model extracts the feature vector of length N×1000.After that,the extracted features are serially concatenated having a feature vector lengthN×2000.Themost prominent features are selected usingEmperor PenguinOptimizer(EPO)method.The method is evaluated on two publically available datasets,such as Kaggle cotton disease dataset-I,and Kaggle cotton-leaf-infection-II.The EPO method returns the feature vector of length 1×755,and 1×824 using dataset-I,and dataset-II,respectively.The classification is performed using 5,7,and 10 folds cross-validation.The Quadratic Discriminant Analysis(QDA)classifier provides an accuracy of 98.9%on 5 fold,98.96%on 7 fold,and 99.07%on 10 fold using Kaggle cotton disease dataset-I while the Ensemble Subspace K Nearest Neighbor(KNN)provides 99.16%on 5 fold,98.99%on 7 fold,and 99.27%on 10 fold using Kaggle cotton-leaf-infection dataset-II.展开更多
In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceo...In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceof employment with a little margin of difference. As a result, there is apressing need to pick up the pace in order to achieve competitive, productive,diverse, and long-term agriculture. Plant disease misinterpretations can resultin the incorrect application of pesticides, causing crop harm. As a result,early detection of infections is critical as well as cost-effective for farmers.To diagnose the disease at an earlier stage, appropriate segmentation of thediseased component from the leaf in an accurate manner is critical. However,due to the existence of noise in the digitally captured image, as well asvariations in backdrop, shape, and brightness in sick photographs, effectiverecognition has become a difficult task. Leaf smut, Bacterial blight andBrown spot diseases are segmented and classified using diseased Apple (20),Cercospora (60), Rice (100), Grape (140), and wheat (180) leaf photos in thesuggested work. In addition, a superior segmentation technique for the ROIfrom sick leaves with living backdrop is presented here. Textural features of thesegmented ROI, such as 1st and 2nd order WPCA Features, are discoveredafter segmentation. This comprises 1st order textural features like kurtosis,skewness, mean and variance as well as 2nd procedure textural features likesmoothness, energy, correlation, homogeneity, contrast, and entropy. Finally,the segmented region of interest’s textural features is fed into four differentclassifiers, with the Enhanced Deep Convolutional Neural Network provingto be the most precise, with a 96.1% accuracy.展开更多
Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant f...Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agri-culture.Manual system to monitor the diseases in plant is time consuming and report a lot of errors.There is high demand for technology to detect the plant dis-eases automatically.Recently image processing approach and deep learning approach are highly invited in detection of plant diseases.The diseases like late blight,bacterial spots,spots on Septoria leaf and yellow leaf curved are widely found in plants.These are the main reasons to affects the plants life and yield.To identify the diseases earliest,our research presents the hybrid method by com-bining the region based convolutional neural network(RCNN)and region based fully convolutional networks(RFCN)for classifying the diseases.First the leaf images of plants are collected and preprocessed to remove noisy data in image.Further data normalization,augmentation and removal of background noises are done.The images are divided as testing and training,training images are fed as input to deep learning architecture.First,we identify the region of interest(RoI)by using selective search.In every region,feature of convolutional neural network(CNN)is extracted independently for further classification.The plants such as tomato,potato and bell pepper are taken for this experiment.The plant input image is analyzed and classify as healthy plant or unhealthy plant.If the image is detected as unhealthy,then type of diseases the plant is affected will be displayed.Our proposed technique achieves 98.5%of accuracy in predicting the plant diseases.展开更多
Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therap...Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therapies can start earlier. Unfortunately, this is not the current standard practice. Artificial intelligence (AI) holds tremendous promise for identifying AD related structural changes in brain scan images. This paper discusses the recent applications and potential future directions for AI in AD diagnostics. Annual brain scanning and computer vision-assisted early diagnosis is encouraged, so that disease-modifying drug therapy could begin earlier in the progressive pathology.展开更多
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
基金funding provided by Universitàdi Pisa within the CRUI-CARE Agreement。
文摘Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.
文摘Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that would identify and solve the problem. At present, we live in a world dominated by technology on a significant scale, major network coverage, high-end smart-phones, as long as there are great discoveries and improvements in AI. The combination of high-end smart-phones and computer vision via Deep Learning has made possible what can be defined as “smartphone-assisted disease diagnosis”. In the area of Deep Learning, multiple architecture models have been trained, some achieving performance reaching more than 99.53% [1]. In this study, we evaluate CNN’s architectures applying transfer learning and deep feature extraction. All the features obtained will also be classified by SVM and KNN. Our work is feasible by the use of the open source Plant Village Dataset. The result obtained shows that SVM is the best classifier for leaf’s diseases detection.
文摘Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities,motivating our mission.Because of the large range of diseases,identifying and classifying diseases with human eyes is not only time-consuming and labor intensive,but also prone to being mistaken with a high error rate.Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and diagnosis.The proposed work describes a deep learning approach for detection plant disease.Therefore,we proposed a deep learning model strategy for detecting plant disease and classification of plant leaf diseases.In our research,we focused on detecting plant diseases in five crops divided into 25 different types of classes(wheat,cotton,grape,corn,and cucumbers).In this task,we used a public image database of healthy and diseased plant leaves acquired under realistic conditions.For our work,a deep convolutional neural model AlexNet and Particle Swarm optimization was trained for this task we found that the metrics(accuracy,specificity,Sensitivity,precision,and Fscore)of the tested deep learning networks achieves an accuracy of 98.83%,specificity of 98.56%,Sensitivity of 98.78%,precision of 98.67%,and F-score of 98.47%,demonstrating the feasibility of this approach.
文摘The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.
基金funded by the University of Haripur,KP Pakistan Researchers Supporting Project number (PKURFL2324L33)。
文摘The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information technology has increased.A sensing system is mandatory to detect rice diseases using Artificial Intelligence(AI).It is being adopted in all medical and plant sciences fields to access and measure the accuracy of results and detection while lowering the risk of diseases.Deep Neural Network(DNN)is a novel technique that will help detect disease present on a rice leave because DNN is also considered a state-of-the-art solution in image detection using sensing nodes.Further in this paper,the adoption of the mixed-method approach Deep Convolutional Neural Network(Deep CNN)has assisted the research in increasing the effectiveness of the proposed method.Deep CNN is used for image recognition and is a class of deep-learning neural networks.CNN is popular and mostly used in the field of image recognition.A dataset of images with three main leaf diseases is selected for training and testing the proposed model.After the image acquisition and preprocessing process,the Deep CNN model was trained to detect and classify three rice diseases(Brown spot,bacterial blight,and blast disease).The proposed model achieved 98.3%accuracy in comparison with similar state-of-the-art techniques.
基金This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/73)Taif University,Taif,Saudi Arabia。
文摘In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manual methods due to their capabilities of 3D scene representation in 2D plane.The capabilities of digital images along with utilization of machine learning methodologies are showing promising accuracies in many applications of prediction and pattern recognition.One of the application fields pertains to detection of diseases occurring in the plants,which are destroying the widespread fields.Traditionally the disease detection process was done by a domain expert using manual examination and laboratory tests.This is a tedious and time consuming process and does not suffice the accuracy levels.This creates a room for the research in developing automation based methods where the images captured through sensors and cameras will be used for detection of disease and control its spreading.The digital images captured from the field’s forms the dataset which trains the machine learning models to predict the nature of the disease.The accuracy of these models is greatly affected by the amount of noise and ailments present in the input images,appropriate segmentation methodology,feature vector development and the choice of machine learning algorithm.To ensure the high rated performance of the designed system the research is moving in a direction to fine tune each and every stage separately considering their dependencies on subsequent stages.Therefore the most optimum solution can be obtained by considering the image processing methodologies for improving the quality of image and then applying statistical methods for feature extraction and selection.The training vector thus developed is capable of presenting the relationship between the feature values and the target class.In this article,a highly accurate system model for detecting the diseases occurring in citrus fruits using a hybrid feature development approach is proposed.The overall improvement in terms of accuracy is measured and depicted.
基金This work was financially supported by MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and also by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(Project No.P0016038).
文摘A country’s economy heavily depends on agricultural development.However,due to several plant diseases,crop growth rate and quality are highly suffered.Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information.Therefore,the agricultural management system is searching for an automatic early disease detection technique.To this end,an efficient and lightweight Deep Learning(DL)-based framework(E-GreenNet)is proposed to overcome these problems and precisely classify the various diseases.In the end-to-end architecture,a MobileNetV3Smallmodel is utilized as a backbone that generates refined,discriminative,and prominent features.Moreover,the proposed model is trained over the PlantVillage(PV),Data Repository of Leaf Images(DRLI),and a new Plant Composite(PC)dataset individually,and later on test samples,its actual performance is evaluated.After extensive experimental analysis,the proposed model obtained 1.00%,0.96%and 0.99%accuracies on all three included datasets.Moreover,the proposed method achieves better inference speed when compared with other State-Of-The-Art(SOTA)approaches.In addition,a comparative analysis is conducted where the proposed strategy shows tremendous discriminative scores as compared to the various pretrained models and other Machine Learning(ML)and DL methods.
文摘Knowledge Management(KM)has become a dynamic concept for inquiry in research.The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related to a particular discipline,several KM frameworks have been designed to serve this purpose.This research aims to propose a Collaborative Knowledge Management(CKM)Framework that bridges gaps and overcomes weaknesses in existing frameworks.The paper also validates the framework by evaluating its effectiveness for the agriculture sector of Pakistan.A software LCWU aKMS was developed which serves as a practical implementation of the concepts behind the proposed CKMF framework.LCWU aKMS served as an effective system for rice leaf disease detection and identification.It aimed to enhance CKM through knowledge sharing,lessons learned,feedback on problem resolutions,help from co-workers,collaboration,and helping communities.Data were collected from 300 rice crop farmers by questionnaires based on hypotheses.Jennex Olfman model was used to estimate the effectiveness of CKMF.Various tests were performed including frequency measures of variables,Cronbach’s alpha reliability,and Pearson’s correlation.The research provided a KMS depicting KM and collaborative features.The disease detection module was evaluated using the precision and recall method and found to be 94.16%accurate.The system could replace the work of extension agents,making it a cost and time-effective initiative for farmer betterment.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number PNURSP2024R333,Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.
文摘The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accurate diagnosis of the disorders is essential.Deep convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification tasks.However,it requires large training datasets and several parameters that need careful adjustment.The proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango leaves.This model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning techniques.The data loader also builds mini-batches for training the models to reduce training time.Finally,optimization approaches help increase the overall model’s efficiency and lower computing costs.MDCN employed on the MangoLeafBD Dataset consists of a total of 4,000 images.Following the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
基金This research supported by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia under Grant Number KAU 2020/251.
文摘Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technology to improve productivity.Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity.Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost,approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert’s opinion.Deep learning-based computer vision techniques like Convolutional Neural Network(CNN)and traditional machine learning-based image classification approaches are being applied to identify plant diseases.In this paper,the CNN model is proposed for the classification of rice and potato plant leaf diseases.Rice leaves are diagnosed with bacterial blight,blast,brown spot and tungro diseases.Potato leaf images are classified into three classes:healthy leaves,early blight and late blight diseases.Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study.The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58%accuracy and potato leaves with 97.66%accuracy.The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine(SVM),K-Nearest Neighbors(KNN),Decision Tree and Random Forest.
文摘Due to the high demand for mango and being the king of all fruits,it is the need of the hour to curb its diseases to fetch high returns.Automatic leaf disease segmentation and identification are still a challenge due to variations in symptoms.Accurate segmentation of the disease is the key prerequisite for any computer-aided system to recognize the diseases,i.e.,Anthracnose,apicalnecrosis,etc.,of a mango plant leaf.To solve this issue,we proposed a CNN based Fully-convolutional-network(FrCNnet)model for the segmentation of the diseased part of the mango leaf.The proposed FrCNnet directly learns the features of each pixel of the input data after applying some preprocessing techniques.We evaluated the proposed FrCNnet on the real-time dataset provided by the mango research institute,Multan,Pakistan.To evaluate the proposed model results,we compared the segmentation performance with the available state-of-the-art models,i.e.,Vgg16,Vgg-19,and Unet.Furthermore,the proposed model’s segmentation accuracy is 99.2%with a false negative rate(FNR)of 0.8%,which is much higher than the other models.We have concluded that by using a FrCNnet,the input image could learn better features that are more prominent and much specific,resulting in an improved and better segmentation performance and diseases’identification.Accordingly,an automated approach helps pathologists and mango growers detect and identify those diseases.
基金The author received funding for this research from Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-124.
文摘Hitherto,Rice(Oryza Sativa)has been one of the most demanding food crops in the world,cultivated in larger quantities,but loss in both quality and quantity of yield due to abiotic and biotic stresses has become a major concern.During cultivation,the crops are most prone to biotic stresses such as bacterial,viral,fungal diseases and pests.These stresses can drastically damage the crop.Lately and erroneously recognized crop diseases can increase fertilizers costs and major yield loss which results in high financial loss and adverse impact on nation’s economy.The proven methods of molecular biology can provide accurate detection of pathogenic factors,but these methods are not accessible to the majority of the farmers,needs high costs or resources,and require domain knowledge to implement.Expert’s field inspection report provides precise crop diagnosis but continuous field inspection over the remotely placed agriculture fields is not feasible.Therefore,cost effective approach for early detection of diseases can help farmers to take necessary steps in time to boost up the crop production.Precision agriculture makes use of decision support systems built using Machine Learning(ML)or Deep Learning(DL)approaches to cut down heavy costs.Timely crop diagnosis process can be automated with the involvement of Computer Vision,Image Processing and Deep Learning(DL)based methods for more precise prediction in less cost and time.Latest research shows that more accurate image classification can be implemented using Deep Learning based Convolutional Neural Network(CNN)model.In this paper,we have proposed an automated Rice Disease Diagnosis System(RDDS)for timely,more accurate and detailed crop disease diagnosis,which consisting of two modules,they are Leaf Disease Identification(LDI)module for disease detection and Infection Intensity Estimation(IIE)module for disease severity analysis.The LDI module is based on the proposed novel RDD_CNN model that classified the eight most harmful and commonly occurring diseases,it has obtained the best test accuracy of 98.47%when compared to its first three versions.And the IIE module is designed for estimating identified disease’s intensity in terms of extent and stage of infection providing detailed and overall diagnosis report specially designed for Brown Spot disease.
文摘Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)rays.If left untreated,these diseases can have severe consequences and spread,especially among children.Early detection is crucial to prevent their spread and improve a patient’s chances of recovery.Dermatology,the branch of medicine dealing with skin diseases,faces challenges in accurately diagnosing these conditions due to the difficulty in identifying and distinguishing between different diseases based on their appearance,type of skin,and others.This study presents a method for detecting skin diseases using Deep Learning(DL),focusing on the most common diseases affecting children in Saudi Arabia due to the high UV value in most of the year,especially in the summer.The method utilizes various Convolutional Neural Network(CNN)architectures to classify skin conditions such as eczema,psoriasis,and ringworm.The proposed method demonstrates high accuracy rates of 99.99%and 97%using famous and effective transfer learning models MobileNet and DenseNet121,respectively.This illustrates the potential of DL in automating the detection of skin diseases and offers a promising approach for early diagnosis and treatment.
基金supported by the Technology Development Program of MSS[No.S3033853]by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Worldwide cotton is the most profitable cash crop.Each year the production of this crop suffers because of several diseases.At an early stage,computerized methods are used for disease detection that may reduce the loss in the production of cotton.Although several methods are proposed for the detection of cotton diseases,however,still there are limitations because of low-quality images,size,shape,variations in orientation,and complex background.Due to these factors,there is a need for novel methods for features extraction/selection for the accurate cotton disease classification.Therefore in this research,an optimized features fusion-based model is proposed,in which two pre-trained architectures called EfficientNet-b0 and Inception-v3 are utilized to extract features,each model extracts the feature vector of length N×1000.After that,the extracted features are serially concatenated having a feature vector lengthN×2000.Themost prominent features are selected usingEmperor PenguinOptimizer(EPO)method.The method is evaluated on two publically available datasets,such as Kaggle cotton disease dataset-I,and Kaggle cotton-leaf-infection-II.The EPO method returns the feature vector of length 1×755,and 1×824 using dataset-I,and dataset-II,respectively.The classification is performed using 5,7,and 10 folds cross-validation.The Quadratic Discriminant Analysis(QDA)classifier provides an accuracy of 98.9%on 5 fold,98.96%on 7 fold,and 99.07%on 10 fold using Kaggle cotton disease dataset-I while the Ensemble Subspace K Nearest Neighbor(KNN)provides 99.16%on 5 fold,98.99%on 7 fold,and 99.27%on 10 fold using Kaggle cotton-leaf-infection dataset-II.
文摘In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceof employment with a little margin of difference. As a result, there is apressing need to pick up the pace in order to achieve competitive, productive,diverse, and long-term agriculture. Plant disease misinterpretations can resultin the incorrect application of pesticides, causing crop harm. As a result,early detection of infections is critical as well as cost-effective for farmers.To diagnose the disease at an earlier stage, appropriate segmentation of thediseased component from the leaf in an accurate manner is critical. However,due to the existence of noise in the digitally captured image, as well asvariations in backdrop, shape, and brightness in sick photographs, effectiverecognition has become a difficult task. Leaf smut, Bacterial blight andBrown spot diseases are segmented and classified using diseased Apple (20),Cercospora (60), Rice (100), Grape (140), and wheat (180) leaf photos in thesuggested work. In addition, a superior segmentation technique for the ROIfrom sick leaves with living backdrop is presented here. Textural features of thesegmented ROI, such as 1st and 2nd order WPCA Features, are discoveredafter segmentation. This comprises 1st order textural features like kurtosis,skewness, mean and variance as well as 2nd procedure textural features likesmoothness, energy, correlation, homogeneity, contrast, and entropy. Finally,the segmented region of interest’s textural features is fed into four differentclassifiers, with the Enhanced Deep Convolutional Neural Network provingto be the most precise, with a 96.1% accuracy.
基金Supporting Project Number(RSP-2021/323),King Saud University,Riyadh,Saudi Arabia。
文摘Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agri-culture.Manual system to monitor the diseases in plant is time consuming and report a lot of errors.There is high demand for technology to detect the plant dis-eases automatically.Recently image processing approach and deep learning approach are highly invited in detection of plant diseases.The diseases like late blight,bacterial spots,spots on Septoria leaf and yellow leaf curved are widely found in plants.These are the main reasons to affects the plants life and yield.To identify the diseases earliest,our research presents the hybrid method by com-bining the region based convolutional neural network(RCNN)and region based fully convolutional networks(RFCN)for classifying the diseases.First the leaf images of plants are collected and preprocessed to remove noisy data in image.Further data normalization,augmentation and removal of background noises are done.The images are divided as testing and training,training images are fed as input to deep learning architecture.First,we identify the region of interest(RoI)by using selective search.In every region,feature of convolutional neural network(CNN)is extracted independently for further classification.The plants such as tomato,potato and bell pepper are taken for this experiment.The plant input image is analyzed and classify as healthy plant or unhealthy plant.If the image is detected as unhealthy,then type of diseases the plant is affected will be displayed.Our proposed technique achieves 98.5%of accuracy in predicting the plant diseases.
文摘Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therapies can start earlier. Unfortunately, this is not the current standard practice. Artificial intelligence (AI) holds tremendous promise for identifying AD related structural changes in brain scan images. This paper discusses the recent applications and potential future directions for AI in AD diagnostics. Annual brain scanning and computer vision-assisted early diagnosis is encouraged, so that disease-modifying drug therapy could begin earlier in the progressive pathology.