期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Random Forests Algorithm Based Duplicate Detection in On-Site Programming Big Data Environment 被引量:1
1
作者 Qianqian Li Meng Li +1 位作者 Lei Guo Zhen Zhang 《Journal of Information Hiding and Privacy Protection》 2020年第4期199-205,共7页
On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is e... On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy. 展开更多
关键词 On-site programming big data duplicate record detection random forests adaptive sliding window
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部