期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating 被引量:7
1
作者 吴宏 兰小东 +5 位作者 刘咏 李飞 张卫东 陈紫瑾 宰雄飞 曾晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1629-1637,共9页
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a... A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance. 展开更多
关键词 Fe-based metallic glass coating detonation gun spraying microstructure tribological behavior corrosion behavior
下载PDF
Microstructures and high-temperature self-lubricating wearresistance mechanisms of graphene-modified WC–12Co coatings 被引量:4
2
作者 Haoliang TIAN Changliang WANG +3 位作者 Mengqiu GUO Yongjing CUI Junguo GAO Zhihui TANG 《Friction》 SCIE EI CAS CSCD 2021年第2期315-331,共17页
To reduce the friction coefficient of cobalt-cemented tungsten carbide(WC–12Co)wear-resistant coatings,graphene was compounded into WC–12Co powder via wet ball milling and spray granulation.Selflubricating and wear-... To reduce the friction coefficient of cobalt-cemented tungsten carbide(WC–12Co)wear-resistant coatings,graphene was compounded into WC–12Co powder via wet ball milling and spray granulation.Selflubricating and wear-resistant graphene coatings were prepared via detonation gun spraying.The presence,morphologies,and phase compositions of graphene in the powders and coatings that are obtained through different powder preparation processes were analyzed.The analysis was performed using the following technologies:energy-dispersive X-ray-spectroscopy(EDXS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and Raman spectroscopy.The mechanical properties of the coatings were studied using a microhardness tester and a universal drawing machine.The friction and wear properties of the coatings were studied using an SRV-4 friction and wear tester.The results showed that the graphene content in the WC–12Co coating modified with graphene was higher than that without modification;graphene was embedded in the structure in a transparent and thin-layer state.The adhesive strength of this coating at approximately 25°C was approximately 60.33 MPa,and the hardness was approximately 984 HV0.3.After high-temperature treatment,the adhesive strength and hardness of the graphene oxide(GO)/WC–12Co coating decreased slightly(the lowest adhesive strength of 53.16 MPa was observed after treatment at 400°C,and the lowest hardness of approximately 837 HV0.3 was observed after treatment at 300°C).Compared to the friction coefficient(0.6)of the WC–12Co coating obtained at room temperature,the friction coefficient of the GO/WC–12Co coating was decreased by approximately 50%of that value.The graphene-modified coating was continuously exposed to the wear tracks on the surface of the contacting materials during friction,and a lubricating film was formed in the microareas in which the wear tracks were present.The coating exhibited improved self-lubricating and wear-resistant effects compared to the unmodified WC–12Co coating.The results of this study demonstrated that graphene could be effective in self-lubrication and wear-reduction in a temperature range of 100–200°C,as a friction coefficient of 0.3 was maintained. 展开更多
关键词 GRAPHENE wear-resistant coating detonation gun spraying self-lubricating wear-resistance mechanism high-temperature friction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部