Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the fi...Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.展开更多
Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt ...Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its展开更多
Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some...Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.展开更多
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only cons...The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or ura...Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or uranium matrix effect and alpha dose matrix effect,and illustrates the correction of these three effects.In addition,we point out the limitation and possible problems of the existing correction methods.展开更多
1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margi...1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different展开更多
The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<s...The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<sub>2</sub>O,and depletion of light rare earth elements.They should be originated from a depleted asthenosphere mantle, belonging to ancient oceanic crust ophiolitic volcanic rock association.Compared with the Longba tholeiitic basalt,the Ganlongtang tholeiitic basalt shows展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still ...The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.展开更多
The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from s...The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from sandstones of the Ketapang Complex in SW Borneo range from 3298 Ma to 78 Ma,and show six major age populations:2476-2344 Ma,2016-1831 Ma,1296-759 Ma,455-406 Ma,262-210 Ma,and 187-78 Ma.The youngest age of these detrital zircons is 78 Ma,indicating that the maximum depositional age of the sandstones is Campanian.Permian-Late Cretaceous detrital zircons are interpreted as having been derived from the nearby Schwaner Mountains and the Permian-Triassic tin belt granitoids in Southeast Asia(SE Asia).Archean-Carboniferous detrital zircons have a continental Gondwana provenance,with their age spectra similar to those of northwestern Australia,indicating that these zircons could be derived from the orogenic belts and cratons in northwestern and central Australia.The provenance of these detrital zircons in this study indicates the SW Borneo block was located on the northwestern margin of Australia during the Paleozoic,in the region of the Banda Embayment.SW Borneo rifted from Australia and moved northward in the Early Jurassic,and this block was added to Sundaland in the Early Cretaceous.The Luconia-Dangerous Grounds continental fragment derived from East Asia collided with SW Borneo after subduction in the Cretaceous,which induced the widespread magmatism in the Schwaner Mountains in SW Borneo.展开更多
The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozo...The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozoic subduction and accretionary processes that were operative during the development of the southeastern CAOB, we conducted a combined U-Pb and Hf-isotope analysis of detrital zircons from previously defined Devonian, Carboniferous and Early Permian strata in the Bengbatu area,Inner Mongolia. Detrital zircons from(meta-) sandstones in these strata commonly yield major Paleozoic age populations at ca. 300-261 Ma, 351-300 Ma and 517-419 Ma, and also give several Precambrian ages that range from 2687 Ma to 544 Ma. The youngest ages redefine the deposition of all these strata to be in the Middle Permian(Wordiane Capitanian) or later, much younger than previously considered.These ages, coupled with regional magmatic records, support an interpretation of most surrounding areas as possible detritus sources, including the Mongolian arcs to the north, the Northern Accretionary Orogen to the south, and the intervening Erenhote Hegenshan Ophiolite Belt. Zircons with magmatic ages of ca. 500-350 Ma and ca. 300-261 Ma display a large range of εHf(t) values(-13.97 to +15.31),whereas ca. 350-300 Ma zircons are dominated by positive εHf(t) values(+0.14 to +16.00). These results support the occurrence of two significant shifts of the zircon εHf(t) values, which has tectonic implications for the understanding of the Carboniferouse Permian evolution of the southeastern CAOB. A marked shift from mixed to positive zircon εHf(t) values at 350 -330 Ma likely manifests the incipient opening of the Hegenshan Ocean, due to the slab rollback of the subducting Paleo-Asian Oceanic lithosphere. Another shift from positive to mixed zircon εHf(t) values at ca. 300 Ma likely corresponds to a tectonic switch from syn-orogenic subduction-related to post-orogenic extensional setting, genetically related to the tectonic collapse of a formerly overthickened crust.展开更多
U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using...U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.展开更多
Mesozoic sedimentary units within the Nanzhao and Mashiping basins record the paleogeographic and tectonic evolution of the Qinling Orogen(QO).This study uses new detrital zircon U-Pb ages and Hf isotopic data to cons...Mesozoic sedimentary units within the Nanzhao and Mashiping basins record the paleogeographic and tectonic evolution of the Qinling Orogen(QO).This study uses new detrital zircon U-Pb ages and Hf isotopic data to constrain the timing of deposition and provenance of the Taishanmiao,Taizishan,Nanzhao,and Mashiping formations of the North Qinling Orogen(NQO).The detrital zircons can be split by age peaks into five major groups,including Early Cretaceous,Late Triassic,Early Paleozoic,Neoproterozoic and Paleoproterozoic age peaks.On the basis of the youngest zircon ages and age-diagnostic fossils,we conclude that the Taishanmiao(youngest age of 234 Ma)and Taizishan(216 Ma)formations were deposited during the Late Triassic,whereas the Nanzhao Formation(110 Ma)was deposited during the Early Cretaceous rather than the Late Jurassic as previously thought.The Mashiping Formation(110 Ma)was also deposited during the Early Cretaceous.Combined with zircon Hf isotopic compositions,zircons from Late Triassic units were generally derived from the NQO,South Qinling Orogen(SQO),and North China Craton(NCC),with minor amounts derived from the Xing-Meng Orogenic Belt.The sediments within the Nanzhao Formation were mainly derived from the QO,with a minor contribution from the NCC.The Early Cretaceous conglomerates of the Mashiping Formation were generally derived from recycled earlier detritus.This implies that Late Triassic deposition was related to the final closure of the Mianlue Ocean,whereas Early Cretaceous deposition was correlated to the continued intercontinental subduction of the Yangtze Craton beneath the QO.The change in provenance within these Mesozoic sediments suggests the QO underwent two periods of significant uplift,which was a process generated sediments that were deposited in a series of basins of this area.展开更多
Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons fro...Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.展开更多
The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock as...The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.展开更多
The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedime...The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedimentary provenance was complex. The composition of the Dabie Orogen includes: the Triassic high pressure-ultrahigh pressure metamorphic rocks, of which the detrital zircon ages are from 234 Ma to 200 Ma; the rocks possibly related to the Qinling and Erlangping Groups representing the southern margin of the Sino-Korean craton in the Qinling and Dabie area, of which the detrital zircon has an age of 481-378 Ma; the Neoproterozoic rocks originated from the Yangtze croton, of which the detrital zircon ages are 799-721 Ma old; and the rocks with the detrital zircon ages of ca. 2000 Ma and ca. 2500 Ma, which could be the old basement of the Yangtze craton.展开更多
基金financially supported by the Ministry of Land and Natural Resources (Grant No. 201311116)the National Natural Science Foundation of China (Grant No. 41173065)+1 种基金Ministry of Science and Technology (No. 2012FY120100)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology (Grant No. J1403)
文摘Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.
基金supported by the National Science Foundation of China (grant No. 41272223)China Geological Survey (grants No. DD20160049, 1212011220247 and 12120110300015)
文摘Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its
基金financially supported by the Institute of Geomechanics in Chinese Academy of Geological Sciences (grant No. DZLXJK201608)Geological Survey Project (grant No. DD20160183)+1 种基金the Key Lab of Shale Oil and Gas Geological of Chinese Academy of Geological Sciencesthe Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits
文摘Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
基金This research was supported by the National Natural Science Foundation of China (No. 40372036)the Key Project of the Ministry of Education, China (No. 306007).
文摘The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
文摘Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or uranium matrix effect and alpha dose matrix effect,and illustrates the correction of these three effects.In addition,we point out the limitation and possible problems of the existing correction methods.
基金co-funded by the China Geological Survey (No.12120114052801)the DREAM project of MOST, China (NO. 2016YFC0600401)
文摘1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different
文摘The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<sub>2</sub>O,and depletion of light rare earth elements.They should be originated from a depleted asthenosphere mantle, belonging to ancient oceanic crust ophiolitic volcanic rock association.Compared with the Longba tholeiitic basalt,the Ganlongtang tholeiitic basalt shows
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-SYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.
基金Supported by the National Natural Science Foundation of China(Nos.41803038,41903005)the Guangxi Natural Science Foundation(No.2018GXNSFAA138193)the China Postdoctoral Science Foundation(No.2019M662458)。
文摘The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from sandstones of the Ketapang Complex in SW Borneo range from 3298 Ma to 78 Ma,and show six major age populations:2476-2344 Ma,2016-1831 Ma,1296-759 Ma,455-406 Ma,262-210 Ma,and 187-78 Ma.The youngest age of these detrital zircons is 78 Ma,indicating that the maximum depositional age of the sandstones is Campanian.Permian-Late Cretaceous detrital zircons are interpreted as having been derived from the nearby Schwaner Mountains and the Permian-Triassic tin belt granitoids in Southeast Asia(SE Asia).Archean-Carboniferous detrital zircons have a continental Gondwana provenance,with their age spectra similar to those of northwestern Australia,indicating that these zircons could be derived from the orogenic belts and cratons in northwestern and central Australia.The provenance of these detrital zircons in this study indicates the SW Borneo block was located on the northwestern margin of Australia during the Paleozoic,in the region of the Banda Embayment.SW Borneo rifted from Australia and moved northward in the Early Jurassic,and this block was added to Sundaland in the Early Cretaceous.The Luconia-Dangerous Grounds continental fragment derived from East Asia collided with SW Borneo after subduction in the Cretaceous,which induced the widespread magmatism in the Schwaner Mountains in SW Borneo.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41730213, 41190075, 41190070)the Hong Kong Research Grants Council General Research Fund (17301915)the HKU Seed Funding Programme for Basic Research (201611159210)
文摘The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozoic subduction and accretionary processes that were operative during the development of the southeastern CAOB, we conducted a combined U-Pb and Hf-isotope analysis of detrital zircons from previously defined Devonian, Carboniferous and Early Permian strata in the Bengbatu area,Inner Mongolia. Detrital zircons from(meta-) sandstones in these strata commonly yield major Paleozoic age populations at ca. 300-261 Ma, 351-300 Ma and 517-419 Ma, and also give several Precambrian ages that range from 2687 Ma to 544 Ma. The youngest ages redefine the deposition of all these strata to be in the Middle Permian(Wordiane Capitanian) or later, much younger than previously considered.These ages, coupled with regional magmatic records, support an interpretation of most surrounding areas as possible detritus sources, including the Mongolian arcs to the north, the Northern Accretionary Orogen to the south, and the intervening Erenhote Hegenshan Ophiolite Belt. Zircons with magmatic ages of ca. 500-350 Ma and ca. 300-261 Ma display a large range of εHf(t) values(-13.97 to +15.31),whereas ca. 350-300 Ma zircons are dominated by positive εHf(t) values(+0.14 to +16.00). These results support the occurrence of two significant shifts of the zircon εHf(t) values, which has tectonic implications for the understanding of the Carboniferouse Permian evolution of the southeastern CAOB. A marked shift from mixed to positive zircon εHf(t) values at 350 -330 Ma likely manifests the incipient opening of the Hegenshan Ocean, due to the slab rollback of the subducting Paleo-Asian Oceanic lithosphere. Another shift from positive to mixed zircon εHf(t) values at ca. 300 Ma likely corresponds to a tectonic switch from syn-orogenic subduction-related to post-orogenic extensional setting, genetically related to the tectonic collapse of a formerly overthickened crust.
基金supported by a grant from the Korea Research Foundation (NRF-2014R1A1A2059895)partly supported by the cooperative research program of the Earthquake Research Institute, The University of Tokyo, Japan
文摘U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.
基金financially supported by the Natural Science Foundation of China(41722204,42072063 and 41472052)the National Key Research and Development Program of China(2016YFC0600103)+1 种基金the research grant of State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(SKLaBIGKF-18-06)Basic Scientific Research Foundation of Central Universities of China(Jilin University)。
文摘Mesozoic sedimentary units within the Nanzhao and Mashiping basins record the paleogeographic and tectonic evolution of the Qinling Orogen(QO).This study uses new detrital zircon U-Pb ages and Hf isotopic data to constrain the timing of deposition and provenance of the Taishanmiao,Taizishan,Nanzhao,and Mashiping formations of the North Qinling Orogen(NQO).The detrital zircons can be split by age peaks into five major groups,including Early Cretaceous,Late Triassic,Early Paleozoic,Neoproterozoic and Paleoproterozoic age peaks.On the basis of the youngest zircon ages and age-diagnostic fossils,we conclude that the Taishanmiao(youngest age of 234 Ma)and Taizishan(216 Ma)formations were deposited during the Late Triassic,whereas the Nanzhao Formation(110 Ma)was deposited during the Early Cretaceous rather than the Late Jurassic as previously thought.The Mashiping Formation(110 Ma)was also deposited during the Early Cretaceous.Combined with zircon Hf isotopic compositions,zircons from Late Triassic units were generally derived from the NQO,South Qinling Orogen(SQO),and North China Craton(NCC),with minor amounts derived from the Xing-Meng Orogenic Belt.The sediments within the Nanzhao Formation were mainly derived from the QO,with a minor contribution from the NCC.The Early Cretaceous conglomerates of the Mashiping Formation were generally derived from recycled earlier detritus.This implies that Late Triassic deposition was related to the final closure of the Mianlue Ocean,whereas Early Cretaceous deposition was correlated to the continued intercontinental subduction of the Yangtze Craton beneath the QO.The change in provenance within these Mesozoic sediments suggests the QO underwent two periods of significant uplift,which was a process generated sediments that were deposited in a series of basins of this area.
基金Supported by the National Oil-Gas Special Project (Grant No.XQ-2004-07)the China Petrolleum Chemical Corporation (Grant No. P04031)the Key Labora-tory of Continental Dynamics,Northwest University
文摘Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.
基金Supported jointly by the National Natural Science Foundation of China (Grant Nos. 40572050 and 40234041) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China
文摘The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.
基金supported by the State Key Research Devel opment Program of China(Grant No.G 1999075507).
文摘The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedimentary provenance was complex. The composition of the Dabie Orogen includes: the Triassic high pressure-ultrahigh pressure metamorphic rocks, of which the detrital zircon ages are from 234 Ma to 200 Ma; the rocks possibly related to the Qinling and Erlangping Groups representing the southern margin of the Sino-Korean craton in the Qinling and Dabie area, of which the detrital zircon has an age of 481-378 Ma; the Neoproterozoic rocks originated from the Yangtze croton, of which the detrital zircon ages are 799-721 Ma old; and the rocks with the detrital zircon ages of ca. 2000 Ma and ca. 2500 Ma, which could be the old basement of the Yangtze craton.