To evaluate the relationship between measures of body composition in obese adolescents by the methods of bioelectrical impedance analysis, deuterium oxide dilution and anthropometric measures, proposing an equation. T...To evaluate the relationship between measures of body composition in obese adolescents by the methods of bioelectrical impedance analysis, deuterium oxide dilution and anthropometric measures, proposing an equation. The variables were weight, height, BMI, triceps and subscapular skinfold thickness, waist and arm muscle circumference, lean body mass, fat mass and total body water by bioelectrical impedance and deuterium oxide dilution methods. The study included 40 obese adolescents, 45% male, age distribution was 2.42 ± 1.19 years and females 55%, and the predominant age was 12.61 ± 1.78. Linear regression equations were developed, capable of predicting body composition from information supplied by the method of deuterium oxide dilution (gold standard), bioelectrical impedance and anthropometry. The variables gender, age, height, arm circumference, triceps and suprailiac skin fold thickness, resistance and reactance were used to estimate lean body mass, fat mass and total body water by the method of deuterium and significantly correlated with variables, resistance, reactance, sex and total body water (TBW) by bioimpedance method. Among the equations developed, five were suitable for this sample, therefore, it is suggested that more studies should be done to test the applicability of the equations in other samples so that we can validate the equations encountered in obese adolescents.展开更多
The deuterodifluoromethyl group CF_(2)D combines the structural features of CF_(3) and CD_(3) groups,finding wide applications in diverse pharmaceutical entities.In this work,the electrochemical monodeuterodefluorinat...The deuterodifluoromethyl group CF_(2)D combines the structural features of CF_(3) and CD_(3) groups,finding wide applications in diverse pharmaceutical entities.In this work,the electrochemical monodeuterodefluorination of Ar-CF_(3) to Ar-CF_(2)D is achieved with an unreported deuterium atom transfer-coupled electron transfer pathway using D_(2)O as the only D source for the first time.A series of Ar-CF_(3) substances,including commercial pharmaceuticals,were converted to corresponding CF_(2)D products in up to 91% yield and 97% D-incorporation.A variety of functional groups,including pyridine,pyrrole,furan,thiophene,borate,thio ether,amine,amide,sulfonamide,and halide,are well tolerated in this protocol.t-BuOLi was an essential reagent to achieve chemoselective mono-defluorination.展开更多
Deuterated ethylene is an important building block for manufacturing various deuterated polyolefins and chemicals.However,low-cost and large-scale production of deuterated ethylene still remain a great challenge.Herei...Deuterated ethylene is an important building block for manufacturing various deuterated polyolefins and chemicals.However,low-cost and large-scale production of deuterated ethylene still remain a great challenge.Herein,with D_(2)O as the D source,we first propose an electrocatalytic deuteration strategy for continuous production of deuterated ethylene from acetylene under ambient conditions.Specially,Ag nanoparticles exhibit a very high deuterated ethylene Faradic efficiency of up to 99.3%at-0.6 V vs.reversible hydrogen electrode.Meanwhile,Ag nanoparticles achieve a deuterated ethylene production rate of 3.72×10^(3)mmol h^(-1)g^(-1)cat and an excellent long-term stability with deuterated ethylene Faradaic efficiencies of~95%in a two-electrode flow cell,which substantially outperform state-of-the-art values for previously reported deuterated alkenes.In-situ electrochemical Infrared absorption and Raman spectroscopies reveal superior acetylene absorption and formation of deuterated ethylene on Ag nanoparticles.This efficient electrocatalytic deuteration strategy opens a new window for continuous and economic production of deuterated alkenes.展开更多
Deuterated compounds are valuable in synthetic,pharmaceutical,and analytical chemistry.The deuteration of halides is a widespread method for highly site-selective deuterium installation.However,the facile,efficient,an...Deuterated compounds are valuable in synthetic,pharmaceutical,and analytical chemistry.The deuteration of halides is a widespread method for highly site-selective deuterium installation.However,the facile,efficient,and economical deuterium incorporation remains challenging.In this work,we introduced a practical deuteration of(hetero)aryl halides through an electrochemical reduction method.This transformation proceeded smoothly at room temperature without metal catalysts,external reductants,or toxic or dangerous reagents.Remarkably,low-cost and chemically equivalent D2O was the sole deuterium source in this reaction.Professional electrosynthesis equipment was not essential because we demonstrated common batteries and electrodes were enough for this reaction.展开更多
文摘To evaluate the relationship between measures of body composition in obese adolescents by the methods of bioelectrical impedance analysis, deuterium oxide dilution and anthropometric measures, proposing an equation. The variables were weight, height, BMI, triceps and subscapular skinfold thickness, waist and arm muscle circumference, lean body mass, fat mass and total body water by bioelectrical impedance and deuterium oxide dilution methods. The study included 40 obese adolescents, 45% male, age distribution was 2.42 ± 1.19 years and females 55%, and the predominant age was 12.61 ± 1.78. Linear regression equations were developed, capable of predicting body composition from information supplied by the method of deuterium oxide dilution (gold standard), bioelectrical impedance and anthropometry. The variables gender, age, height, arm circumference, triceps and suprailiac skin fold thickness, resistance and reactance were used to estimate lean body mass, fat mass and total body water by the method of deuterium and significantly correlated with variables, resistance, reactance, sex and total body water (TBW) by bioimpedance method. Among the equations developed, five were suitable for this sample, therefore, it is suggested that more studies should be done to test the applicability of the equations in other samples so that we can validate the equations encountered in obese adolescents.
基金supported by the National Science Foundation of China(grant nos.22071105 and 22031008)the QingLan Project of Jiangsu Education Department.
文摘The deuterodifluoromethyl group CF_(2)D combines the structural features of CF_(3) and CD_(3) groups,finding wide applications in diverse pharmaceutical entities.In this work,the electrochemical monodeuterodefluorination of Ar-CF_(3) to Ar-CF_(2)D is achieved with an unreported deuterium atom transfer-coupled electron transfer pathway using D_(2)O as the only D source for the first time.A series of Ar-CF_(3) substances,including commercial pharmaceuticals,were converted to corresponding CF_(2)D products in up to 91% yield and 97% D-incorporation.A variety of functional groups,including pyridine,pyrrole,furan,thiophene,borate,thio ether,amine,amide,sulfonamide,and halide,are well tolerated in this protocol.t-BuOLi was an essential reagent to achieve chemoselective mono-defluorination.
基金supported by the Natural Science Foundation of Shaanxi Province(No.2020JQ-141)the National Natural Science Foundation of China(No.22005245)+1 种基金the Synergy Innovation Foundation of the University and Enterprise for Graduate Students in Northwestern Polytechnical University(No.CX2021037)the National Key Research and Development Program of China(No.SQ2021YFE010191)。
文摘Deuterated ethylene is an important building block for manufacturing various deuterated polyolefins and chemicals.However,low-cost and large-scale production of deuterated ethylene still remain a great challenge.Herein,with D_(2)O as the D source,we first propose an electrocatalytic deuteration strategy for continuous production of deuterated ethylene from acetylene under ambient conditions.Specially,Ag nanoparticles exhibit a very high deuterated ethylene Faradic efficiency of up to 99.3%at-0.6 V vs.reversible hydrogen electrode.Meanwhile,Ag nanoparticles achieve a deuterated ethylene production rate of 3.72×10^(3)mmol h^(-1)g^(-1)cat and an excellent long-term stability with deuterated ethylene Faradaic efficiencies of~95%in a two-electrode flow cell,which substantially outperform state-of-the-art values for previously reported deuterated alkenes.In-situ electrochemical Infrared absorption and Raman spectroscopies reveal superior acetylene absorption and formation of deuterated ethylene on Ag nanoparticles.This efficient electrocatalytic deuteration strategy opens a new window for continuous and economic production of deuterated alkenes.
基金supported by the National Natural Science Foundation of China(no.21520102003)the Hubei Province Natural Science Foundation of China(no.2017CFA010)The Program of Introducing Talents of Discipline to Universities of China(111 Program)is also appreciated.
文摘Deuterated compounds are valuable in synthetic,pharmaceutical,and analytical chemistry.The deuteration of halides is a widespread method for highly site-selective deuterium installation.However,the facile,efficient,and economical deuterium incorporation remains challenging.In this work,we introduced a practical deuteration of(hetero)aryl halides through an electrochemical reduction method.This transformation proceeded smoothly at room temperature without metal catalysts,external reductants,or toxic or dangerous reagents.Remarkably,low-cost and chemically equivalent D2O was the sole deuterium source in this reaction.Professional electrosynthesis equipment was not essential because we demonstrated common batteries and electrodes were enough for this reaction.