期刊文献+
共找到3,757篇文章
< 1 2 188 >
每页显示 20 50 100
Fractal model of spontaneous imbibition in low-permeability reservoirs coupled with heterogeneity of pore seepage channels and threshold pressure
1
作者 Ming-Sheng Zuo Hao Chen +3 位作者 Xi-Liang Liu Hai-Peng Liu Yi Wu Xin-Yu Qi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1002-1017,共16页
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res... Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization. 展开更多
关键词 Spontaneous imbibition low-permeability reservoir Fractal model Threshold pressure Capillary tube
下载PDF
Performance and enhanced oil recovery efficiency of an acid-resistant polymer microspheres of anti-CO_(2) channeling in low-permeability reservoirs
2
作者 Hai-Zhuang Jiang Hong-Bin Yang +5 位作者 Ruo-Sheng Pan Zhen-Yu Ren Wan-Li Kang Jun-Yi Zhang Shi-Long Pan Bauyrzhan Sarsenbekuly 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2420-2432,共13页
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can... CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs. 展开更多
关键词 low-permeability reservoir Anti-CO_(2)channeling Polymer microsphere Acid resistance
下载PDF
Development and technology status of energy storage in depleted gas reservoirs 被引量:1
3
作者 Jifang Wan Yangqing Sun +4 位作者 Yuxian He Wendong Ji Jingcui Li Liangliang Jiang Maria Jose Jurado 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期198-221,共24页
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a... Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs. 展开更多
关键词 Depleted gas reservoirs Technology and development Siting analysis Safety evaluation Compressed air energy storage
下载PDF
Genesis of the low-permeability reservoir bed of upper Triassic Xujiahe Formation in Xinchang gas field,western Sichuan Depression 被引量:9
4
作者 Xu Zhangyou Zhang Xiaoyu +1 位作者 Wu Shenghe Zhao Yan 《Petroleum Science》 SCIE CAS CSCD 2008年第3期230-237,共8页
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec... The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds. 展开更多
关键词 low-permeability reservoir diagenetic reservoir facies Xujiahe Formation upper Triassic Xinchang gas field western Sichuan Depression
下载PDF
The Relationship between Fractures and Tectonic Stress Field in the Extra Low-Permeability Sandstone Reservoir at the South of Western Sichuan Depression 被引量:13
5
作者 曾联波 漆家福 李跃纲 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期223-231,共9页
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper... The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure. 展开更多
关键词 fracture tectonic stress field extra low-permeability reservoir south of western Sichuan depression
下载PDF
A Comprehensive Evaluation Method for Low-permeability Reservoirs 被引量:5
6
作者 Zeng Lianbo Wang Zhengguo Zhang Guibin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期9-13,共5页
According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a mat... According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a matrix system as the basis, a fracture system as the focus and a stress field system as the restricted factor. It can objectively reflect not only the storage capability and seepage capability of low-permeability reservoirs, but also the effect on development as well. At the same time, it can predict the seepage characteristics at different development stages and provide a reasonable geological basis for the development of low-permeability reservoirs. 展开更多
关键词 Matrix system fracture system stress field system low-permeability reservoir comprehensive evaluation
下载PDF
Permeability and heterogeneity adaptability of surfactant-alternating-gas foam for recovering oil from low-permeability reservoirs 被引量:4
7
作者 Ming-Chen Ding Qiang Li +3 位作者 Yu-Jing Yuan Ye-Fei Wang Ning Zhao Yu-Gui Han 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1185-1197,共13页
As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant... As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective. 展开更多
关键词 SAG foam EOR low-permeability reservoir PERMEABILITY HETEROGENEITY
下载PDF
Characteristics and mechanisms of supercritical CO_(2) flooding under different factors in low-permeability reservoirs 被引量:6
8
作者 Zheng Chen Yu-Liang Su +2 位作者 Lei Li Fan-Kun Meng Xiao-Mei Zhou 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1174-1184,共11页
In recent years,supercritical CO_(2)flooding has become an effective method for developing lowpermeability reservoirs.In supercritical CO_(2)flooding different factors influence the mechanism of its displacement proce... In recent years,supercritical CO_(2)flooding has become an effective method for developing lowpermeability reservoirs.In supercritical CO_(2)flooding different factors influence the mechanism of its displacement process for oil recovery.Asynchronous injection-production modes can use supercritical CO_(2)to enhance oil recovery but may also worsen the injection capacity.Cores with high permeability have higher oil recovery rates and better injection capacity,however,gas channeling occurs.Supercritical CO_(2)flooding has a higher oil recovery at high pressure levels,which delays the occurrence of gas channeling.Conversely,gas injection has lower displacement efficiency but better injection capacity at the high water cut stage.This study analyzes the displacement characteristics of supercritical CO_(2)flooding with a series of experiments under different injection and production parameters.Experimental results show that the gas breakthrough stage has the fastest oil production and the supercritical CO_(2)injection capacity variation tendency is closely related to the gas-oil ratio.Further experiments show that higher injection rates represent significant ultimate oil recovery and injection index,providing a good reference for developing low-permeability reservoirs. 展开更多
关键词 low-permeability reservoir Supercritical CO_(2)flooding Influence mechanism Enhanced oil recovery Injection capacity
下载PDF
Experimental study of low-damage drilling fluid to minimize waterblocking of low-permeability gas reservoirs 被引量:4
9
作者 Zhang Hongxia Yan Jienian +2 位作者 Lu Yu Shu Yong Zhao Shengying 《Petroleum Science》 SCIE CAS CSCD 2009年第3期271-276,共6页
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba... This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field. 展开更多
关键词 low-permeability gas reservoir waterblocking ideal packing theory (IPT) film-forming agent drilling fluid
下载PDF
Nonlinear flow numerical simulation of low-permeability reservoir 被引量:2
10
作者 于荣泽 卞亚南 +3 位作者 周舒 王楷军 吕琦 陈朝辉 《Journal of Central South University》 SCIE EI CAS 2012年第7期1980-1987,共8页
A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was intr... A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir. 展开更多
关键词 low-permeability reservoir nonlinear flow mathematical model numerical simulation
下载PDF
Role of high-density brines in reservoir development stages:A review
11
作者 Arshad Raza Mohamed Mahmoud +4 位作者 Saad Alafnan Muhammad Arif Farzain Ud Din Kirmani Muhammad Shahzad Kamal Mobeen Murtaza Azeem Rana 《Energy Geoscience》 EI 2024年第3期13-23,共11页
High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development... High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding. 展开更多
关键词 reservoir development BRINE High density Environment SUSTAINABILITY
下载PDF
Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs
12
作者 Fang Li Juan Wu +3 位作者 Haiyong Yi Lihong Wu Lingyun Du Yuan Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1015-1030,共16页
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s... Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results. 展开更多
关键词 Well spacing for primary development tight gas reservoir fractured horizontal well threshold pressure gradient stress sensitivity
下载PDF
Separate-layer balanced waterflooding development technology for thick and complex carbonate reservoirs in the Middle East
13
作者 SONG Xinmin LI Yong +6 位作者 LI Fengfeng YI Liping SONG Benbiao ZHU Guangya SU Haiyang WEI Liang YANG Chao 《Petroleum Exploration and Development》 SCIE 2024年第3期661-673,共13页
Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic... Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs. 展开更多
关键词 the Middle East thick carbonate reservoir vertical heterogeneity concealed baffle and barrier sealing separated development units balanced waterflooding
下载PDF
Surface-functionalized cellulose nanocrystals(CNC)and synergisms with surfactant for enhanced oil recovery in low-permeability reservoirs 被引量:1
14
作者 Zhe Li Wan-Li Kang +6 位作者 Meng-Lan Li Hong-Bin Yang Tong-Yu Zhu Ying-Qi He Hai-Zhuang jang Bo-Bo Zhou Ji-Ting Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1572-1583,共12页
Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this stu... Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs. 展开更多
关键词 low-permeability reservoirs Enhanced oil recovery Cellulose nanocrystals(CNC) SURFACTANT Dispersion stability
下载PDF
Phase Transitions and Seepage Characteristics during the Depletion Development of Deep Condensate Gas Reservoirs
15
作者 Qiang Liu Rujun Wang +6 位作者 Yintao Zhang Chong Sun Meichun Yang Yuliang Su Wendong Wang Ying Shi Zheng Chen 《Energy Engineering》 EI 2024年第10期2797-2823,共27页
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal... Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs. 展开更多
关键词 Deep condensate gas reservoirs depletion development phase behavior percolation laws dynamic production analysis
下载PDF
SENSITIVITY COEFFICIENTS OF SINGLE-PHASE FLOW IN LOW-PERMEABILITY HETEROGENEOUS RESERVOIRS
16
作者 程时清 张盛宗 +1 位作者 黄延章 朱维耀 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第6期712-720,共9页
Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained.... Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient. 展开更多
关键词 non-Darcy flow through porous media PERMEABILITY POROSITY sensitivity coefficient inverse problem low-permeability reservoir
下载PDF
A Method for Identifying Channeling Paths in Low-Permeability Fractured Reservoirs
17
作者 Zhenfeng Zhao Bin Li +6 位作者 Zubo Su Lijing Chang Hongzheng Zhu Ming Liu Jialing Ma Fan Wang Qianwan Li 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1781-1794,共14页
Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-wel... Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs. 展开更多
关键词 low-permeability fractured reservoir fracturing horizontal well interwell connectivity dual media channeling paths
下载PDF
A new method of building permeability model in low-permeability reservoir numerical simulation
18
作者 Yong-Chao Xue Lin-Song Cheng Lei Su 《Natural Science》 2010年第2期120-123,共4页
Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging p... Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging per-meability by using primiparity data of oil field. This method has been successfully applied to revise logging permeability of micro-fractured low-permeability sand reservoir in Baiyushan area of Jing’An oil field, which shows that the method is reliable because the geological model building through the permeability which has been handled by this method accords with the real reservoir significantly. 展开更多
关键词 LOGGING PERMEABILITY Micro-Fractured low-permeability reservoir REVISE
下载PDF
Fractured Low-permeability Reservoirs in China
19
作者 Zeng Lianbo and Tian Chonglu(University of Petroleum, Beijing) 《China Oil & Gas》 CAS 1998年第3期158-159,共2页
关键词 FRACTURE low-permeability reservoir FEATURE
下载PDF
Influence of the Earth Stress on the Development of Gas Reservoirs
20
作者 李治平 宋艳波 +1 位作者 袁士义 胡永乐 《Petroleum Science》 SCIE CAS CSCD 2004年第4期6-10,35,共6页
Gas reservoirs are located kilometers deep beneath the earth's surface under great earth stresses, including the overburden stress and the horizontal stress. After a well is drilled, the stress condition around t... Gas reservoirs are located kilometers deep beneath the earth's surface under great earth stresses, including the overburden stress and the horizontal stress. After a well is drilled, the stress condition around the well bore will be changed. During the development, a pressure funnel forms around the hole, with the rock stress redistributed. In this paper, the influence of the earth stress on the gas reservoir development, including the output, the period of the steady output, the recovery and ratio, is researched thoroughly with the theory of reservoir seepage dynamics and clarified with the calculation method. The research shows that the earth stress produces impacts on the development of a gas reservoir when the stress is great. 展开更多
关键词 Earth stress gas reservoir developMENT
下载PDF
上一页 1 2 188 下一页 到第
使用帮助 返回顶部