Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and in...Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and includes inflammation, loss of the blood-brain barrier, and alteration in the extracellular matrix (ECM). One of the main problems is the formation of a glial scar and the production of inhibitory ECM, such as proteoglycans, that generates a physical and mechanical barrier, impeding axonal regrowth (Figure 1A).展开更多
文摘Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and includes inflammation, loss of the blood-brain barrier, and alteration in the extracellular matrix (ECM). One of the main problems is the formation of a glial scar and the production of inhibitory ECM, such as proteoglycans, that generates a physical and mechanical barrier, impeding axonal regrowth (Figure 1A).