Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing s...Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing sector has benefited from automation, several challenges exist within the Australian underground coal industry which makes it difficult to fully exploit these technologies. At the University of Wollongong a series of reprogrammable electromechanical manipulators have been designed to overcome these challenges and automatically handle the installation of roof and rib containment consumables on a continuous miner. The automated manipulation removes personnel from hazards in the immediate face area, particularly those associated with working in a confined and unstable working environment in close proximity to rotating and moving equipment. In a series of above ground trials the automated system was successfully demonstrated without human intervention and proven to be capable of achieving cycle times at a rate of 10 m per operating hour, consistent with that required to support high capacity longwall mines. The trials also identified a number of refinements which could further improve both cycle times and system reliability when considering the technology for underground use. The results have concluded that conventional manual handling practices on a continuous miner can be eliminated, and that the prototypes have significantly reduced the technical risk in proceeding to a full underground trial.展开更多
A coal burst occurred on 15 April, 2014 at the Austar Coal Mine, located west of Newcastle, NSW,Australia. The burst resulted in fatal injuries to two men working as part of the mining crew at the development face. At...A coal burst occurred on 15 April, 2014 at the Austar Coal Mine, located west of Newcastle, NSW,Australia. The burst resulted in fatal injuries to two men working as part of the mining crew at the development face. At the time, a continuous miner was being used to mine a longwall development gate road through heavily structured coal, at a depth of approximately 550 m. A number of pre-cursor bumps had occurred on previous shifts, emanating from the coal ribs of the roadway, in proximity to the coal face.This paper reviews the geological, geotechnical and mining conditions and circumstances leading up to the coal burst event; and presents and discusses the available evidence and possible interpretations relating to the geomechanical behaviour mechanisms that may have been critical factors in this incident. The paper also discusses some key technical and operational considerations of ground support systems and mining practices and strategies needed for operating in such conditions in the future.展开更多
基金the Australian Coal Association Research Programthe Roadway Development Task Group for their ongoing support with funding and review
文摘Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing sector has benefited from automation, several challenges exist within the Australian underground coal industry which makes it difficult to fully exploit these technologies. At the University of Wollongong a series of reprogrammable electromechanical manipulators have been designed to overcome these challenges and automatically handle the installation of roof and rib containment consumables on a continuous miner. The automated manipulation removes personnel from hazards in the immediate face area, particularly those associated with working in a confined and unstable working environment in close proximity to rotating and moving equipment. In a series of above ground trials the automated system was successfully demonstrated without human intervention and proven to be capable of achieving cycle times at a rate of 10 m per operating hour, consistent with that required to support high capacity longwall mines. The trials also identified a number of refinements which could further improve both cycle times and system reliability when considering the technology for underground use. The results have concluded that conventional manual handling practices on a continuous miner can be eliminated, and that the prototypes have significantly reduced the technical risk in proceeding to a full underground trial.
文摘A coal burst occurred on 15 April, 2014 at the Austar Coal Mine, located west of Newcastle, NSW,Australia. The burst resulted in fatal injuries to two men working as part of the mining crew at the development face. At the time, a continuous miner was being used to mine a longwall development gate road through heavily structured coal, at a depth of approximately 550 m. A number of pre-cursor bumps had occurred on previous shifts, emanating from the coal ribs of the roadway, in proximity to the coal face.This paper reviews the geological, geotechnical and mining conditions and circumstances leading up to the coal burst event; and presents and discusses the available evidence and possible interpretations relating to the geomechanical behaviour mechanisms that may have been critical factors in this incident. The paper also discusses some key technical and operational considerations of ground support systems and mining practices and strategies needed for operating in such conditions in the future.