On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th...On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.展开更多
We establish a simulation model based on the theory of air flow to analyze the accelerated release effect of the quick release valve inside the air brake control valve.In addition, the combined simulation system of tr...We establish a simulation model based on the theory of air flow to analyze the accelerated release effect of the quick release valve inside the air brake control valve.In addition, the combined simulation system of train air brake system and longitudinal train dynamics is used to analyze how the parameters of the quick release valve in the 120/120–1 brake control valve affect the propagation characteristics of the train brake pipe pressure wave, the release action range of the accelerated brake, and the longitudinal coupler force for a 20,000-ton heavy haul train on the section of the Datong–Qinhuangdao Railway. The results show that the quick release valve can effectively accelerate the rising speed of the train brake pipe pressure during the initial release, as the accelerated release effect is evident before the train brake pipe pressure reaches582 k Pa. The quick release valve can effectively accelerate the release of the rear cars, reducing the longitudinal coupler force impact due to time delay of the release process. The quick release valve can effectively reduce the tensile coupler force in the train by as much as 20% in certain cases.展开更多
In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status ev...In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status evaluation variable set construction and reduction optimization method is proposed. Firstly, the status of heavy haul railway line is analyzed, and an initial set of evaluation variables affecting the line status is constructed. Then, based on the association rule and the principal component analysis method, key variables are extracted from the initial variable set to establish the evaluation system. Finally, this method is verified with actual data of a line. The results show that the service performance of heavy haul railway line can still be evaluated accurately when the evaluation variables are reduced by 60% in the proposed method.展开更多
Purpose–This research addresses the diverse characteristics of existing railway steel bridges in China,including variations in construction age,design standards,structural types,manufacturing processes,materials and ...Purpose–This research addresses the diverse characteristics of existing railway steel bridges in China,including variations in construction age,design standards,structural types,manufacturing processes,materials and service conditions.It also focuses on prominent defects and challenges related to heavy transportation conditions,particularly low live haul reserves and severe fatigue problems.Design/methodology/approach–The study encompasses three key aspects:(1)Adaptability assessment:It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses,experiments and engineering applications.(2)Strengthening:To combat frequent crack defects in the vertical stiffener end structure of girder webs,fatigue performance tests and reinforcement scheme experiments were conducted.These experiments included the development of a hot-spot stress S-N curve for this structure,validating the effectiveness of methods like crack stop holes,ultrasonic hammering and flange angle steel.(3)Service life extension:Research on the cruciform welded joint structure(non-fusion transfer type)focused on fatigue performance over the long life cycle.This led to the establishment of a fatigue S-N curve,enhancing Chinese design codes.Findings–The research achieved several significant outcomes:(1)Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line.(2)Post-reinforcement,a substantial 26%to 32%reduction in live haul stress on bridge members was achieved.(3)The strengthening and retrofitting efforts met design expectations,enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.Originality/value–This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges,providing valuable insights into adaptability assessment,strengthening techniques and service life extension methods.Furthermore,the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.展开更多
文摘On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.
基金China National Railway Group Co.,Ltd(N2020J037).
文摘We establish a simulation model based on the theory of air flow to analyze the accelerated release effect of the quick release valve inside the air brake control valve.In addition, the combined simulation system of train air brake system and longitudinal train dynamics is used to analyze how the parameters of the quick release valve in the 120/120–1 brake control valve affect the propagation characteristics of the train brake pipe pressure wave, the release action range of the accelerated brake, and the longitudinal coupler force for a 20,000-ton heavy haul train on the section of the Datong–Qinhuangdao Railway. The results show that the quick release valve can effectively accelerate the rising speed of the train brake pipe pressure during the initial release, as the accelerated release effect is evident before the train brake pipe pressure reaches582 k Pa. The quick release valve can effectively accelerate the release of the rear cars, reducing the longitudinal coupler force impact due to time delay of the release process. The quick release valve can effectively reduce the tensile coupler force in the train by as much as 20% in certain cases.
文摘In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status evaluation variable set construction and reduction optimization method is proposed. Firstly, the status of heavy haul railway line is analyzed, and an initial set of evaluation variables affecting the line status is constructed. Then, based on the association rule and the principal component analysis method, key variables are extracted from the initial variable set to establish the evaluation system. Finally, this method is verified with actual data of a line. The results show that the service performance of heavy haul railway line can still be evaluated accurately when the evaluation variables are reduced by 60% in the proposed method.
基金gratitude to the China High-Speed Rail Joint Fund(U1934209)the CARS Fund(2023YJ124)for their invaluable support during the course of this research project.
文摘Purpose–This research addresses the diverse characteristics of existing railway steel bridges in China,including variations in construction age,design standards,structural types,manufacturing processes,materials and service conditions.It also focuses on prominent defects and challenges related to heavy transportation conditions,particularly low live haul reserves and severe fatigue problems.Design/methodology/approach–The study encompasses three key aspects:(1)Adaptability assessment:It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses,experiments and engineering applications.(2)Strengthening:To combat frequent crack defects in the vertical stiffener end structure of girder webs,fatigue performance tests and reinforcement scheme experiments were conducted.These experiments included the development of a hot-spot stress S-N curve for this structure,validating the effectiveness of methods like crack stop holes,ultrasonic hammering and flange angle steel.(3)Service life extension:Research on the cruciform welded joint structure(non-fusion transfer type)focused on fatigue performance over the long life cycle.This led to the establishment of a fatigue S-N curve,enhancing Chinese design codes.Findings–The research achieved several significant outcomes:(1)Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line.(2)Post-reinforcement,a substantial 26%to 32%reduction in live haul stress on bridge members was achieved.(3)The strengthening and retrofitting efforts met design expectations,enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.Originality/value–This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges,providing valuable insights into adaptability assessment,strengthening techniques and service life extension methods.Furthermore,the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.