Background: The Air Force Health Study collected reproductive outcomes for live-born children of male Air Force veterans of the Vietnam War. Methods: Dioxin values for participants were obtained from blood samples. An...Background: The Air Force Health Study collected reproductive outcomes for live-born children of male Air Force veterans of the Vietnam War. Methods: Dioxin values for participants were obtained from blood samples. Analyses were conducted of occurrence of 16 specific categories of birth defects and developmental disabilities. Children were categorized as conceived before and after the start of participants’ Vietnam War service. Children conceived before the start of Vietnam War service were treated as being conceived when their fathers had unquantifiable dioxin values. Children conceived after the start of Vietnam War service for participants with missing dioxin values were excluded from primary analyses, but were used to assess the impact of their exclusion on conclusions. Correlation between values for specific categories for multiple children fathered by the same participant was accounted for. The dose-response relationship was treated as a step function increasing for dioxin values larger than adaptively identified individual thresholds changing with the specific category. Results: For 15 of 16 specific categories, the probability of occurrence increased substantially for a sufficiently high dioxin level above identified thresholds. Exclusion of children due to missing dioxin likely did not affect these results. Conclusions: Results supported the conclusion of substantial adverse effects on a wide variety of specific categories of birth defects and developmental disabilities due to sufficiently high exposures to dioxin, a toxic contaminant of Agent Orange used for herbicide spraying in the Vietnam War. Results may hold more generally, but might also have been affected by a variety of limitations.展开更多
Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabol...Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.展开更多
The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding...The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity,functional heterogeneity,and their importance in intestinal tract development and disease.Although such profiling has been extensively conducted in humans and mice,the single-cell gene expression landscape of the pig cecum remains unexplored.Here,single-cell RNA sequencing was performed on 45572 cells obtained from seven cecal samples in pigs at four different developmental stages(days(D)30,42,150,and 730).Analysis revealed 12 major cell types and 38 subtypes,as well as their distinctive genes,transcription factors,and regulons,many of which were conserved in humans.An increase in the relative proportions of CD8^(+)T and Granzyme A(low expression)natural killer T cells(GZMA^(low)NKT)cells and a decrease in the relative proportions of epithelial stem cells,Tregs,RHEX^(+)T cells,and plasmacytoid dendritic cells(pDCs)were noted across the developmental stages.Moreover,the post-weaning period exhibited an up-regulation in mitochondrial genes,COX2 and ND2,as well as genes involved in immune activation in multiple cell types.Cell-cell crosstalk analysis indicated that IBP6^(+)fibroblasts were the main signal senders at D30,whereas IBP6^(−)fibroblasts assumed this role at the other stages.NKT cells established interactions with epithelial cells and IBP6^(+)fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs.This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.展开更多
BACKGROUND Developmental dysplasia of the hip(DDH)is a common osteoarticular deformity in pediatric orthopedics.A patient with bilateral DDH was diagnosed and treated using our improved technique"(powerful overtu...BACKGROUND Developmental dysplasia of the hip(DDH)is a common osteoarticular deformity in pediatric orthopedics.A patient with bilateral DDH was diagnosed and treated using our improved technique"(powerful overturning acetabuloplasty)"combined with femoral rotational shortening osteotomy.CASE SUMMARY A 4-year-old girl who was diagnosed with bilateral DDH could not stand normally,and sought surgical treatment to solve the problem of double hip extension and standing.As this child had high dislocation of the hip joint and the acetabular index was high,we changed the traditional acetabuloplasty to"powerful turnover acetabuloplasty"combined with femoral rotation shortening osteotomy.During the short-term postoperative follow-up(1,3,6,9,12,and 15 months),the child had no discomfort in her lower limbs.After the braces and internal fixation plates were removed,formal rehabilitation training was actively carried out.CONCLUSION Our"powerful overturning acetabuloplasty"combined with femoral rotational shortening osteotomy is feasible in the treatment of DDH in children.This technology may be widely used in the clinic.展开更多
The present study aims to establish a literature review on intervention programs for executive functions(EFs)through the use of fundamental motor skills,from a neuropsychopedagogical perspective in subjects with Devel...The present study aims to establish a literature review on intervention programs for executive functions(EFs)through the use of fundamental motor skills,from a neuropsychopedagogical perspective in subjects with Developmental Coordination Disorder(DCD).An exploratory study was carried out through an integrative literature review.The research was carried out in the Scientific databases Electronic Library Online(SciELO),Latin American and Caribbean Literature in Health Sciences(LILACS),Virtual Health Library-Psychology Brazil(BVSPSI),Electronic Journals of Psychology(PePSIC),in the periodicals available in the Brazilian Digital Library of Theses and Dissertations(BDTD)and on the website of the Coordination for the Improvement of Higher Education Personnel(CAPES).The covering publications took place from 2018 to 2023,14 articles were selected for analysis.This literature review made it possible to create strategies for stimulating EF and Visuomotor Functions so that educators and other professionals can better deal with students with DCD.It was perceived the need to carry out and develop more empirical research regarding the intervention of EFs and Visuomotor Functions by educators and professionals,with a greater sampling amplitude,to increase the number of studies that enable interventions both in children and in teenagers with DCD.展开更多
Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embry...Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embryonic development.Therefore,we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.Results We cultured porcine in vitro-fertilized embryos in medium with AN(0,0.3,0.5,and 1 mg/mL)for 6 d.AN at 0.5 mg/mL significantly increased the blastocyst formation rate,trophectoderm cell number,and cellular survival rate compared to the control.AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control.Moreover,AN significantly improved the quantity of mitochondria and mitochondrial membrane potential,and increased the lipid droplet,fatty acid,and ATP levels.Interestingly,the levels of proteins and genes related to the sonic hedgehog(SHH)signaling pathway were significantly increased by AN.Conclusions These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.展开更多
Developmental dysplasia of hip seriously affects the health of children,and pelvic osteotomy is an important part of surgical treatment.Improving the shape of the acetabulum,preventing or delaying the progression of o...Developmental dysplasia of hip seriously affects the health of children,and pelvic osteotomy is an important part of surgical treatment.Improving the shape of the acetabulum,preventing or delaying the progression of osteoarthritis is the ultimate goal of pelvic osteotomies.Re-directional osteotomies,reshaping osteotomies and salvage osteotomies are the three most common types of pelvic osteotomy.The influence of different pelvic osteotomy on acetabular morphology is different,and the acetabular morphology after osteotomy is closely related to the prognosis of the patients.But there lacks comparison of acetabular morphology between different pelvic osteotomies,on the basis of retrospective analysis and measurable imaging indicators,this study predicted the acetabular shape after developmental dysplasia of the hip pelvic osteotomy in order to help clinicians make reasonable and correct decisions and improve the planning and performance of pelvic osteotomy.展开更多
Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lili...Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.展开更多
Recycling of junks is positive for the environmental protection.Along with the proposal of three-child policy,purchase volume of milk powder surely will experience a drastic growth,and the milk powder spoon as an affi...Recycling of junks is positive for the environmental protection.Along with the proposal of three-child policy,purchase volume of milk powder surely will experience a drastic growth,and the milk powder spoon as an affiliated product will win the attention of parents.Against the background of consumption upgrading,consumers have had higher requirements on the humanization and safety design of products.Most of milk powder spoons on the market are plastic,and the disposal of waste milk powder spoon has gradually become a burden for the environment.Based on the environment-friendly and developmental concept,and also the characteristics of infant development,this paper proposed the“in-one”design,applied color and tactile designs into the milk powder design,chose food grade silicone to make the milk powder spoon not only a spoon but also a baby teether toy,so as to expand the service life and functions of the product,meet the requirements of saving energy,protecting environment and developing circular economy,which also to some extent reduces the burden on environment brought by plastics,improves the efficiency of junk recycling,and meet the individualized needs of consumers.展开更多
The process of development is intricate and couple-dependent phenomenon.Accordingly,the study of molecular and cellular biology-based developmental toxicology biomarkers increasingly is becoming an important part of r...The process of development is intricate and couple-dependent phenomenon.Accordingly,the study of molecular and cellular biology-based developmental toxicology biomarkers increasingly is becoming an important part of risk assessment and management of chemicals for detection of health outcomes and/or biological endpoint like cytotoxicity,cell death,etc.Since,the evolution of developmental toxicology field a number of tools/markers have been developed or addressed to deal with developmental outcomes,which can ultimately be used for the development of adverse outcome pathways(AOPs)of developmental toxicants.As a result,this paper provides an overview of the current state of developmental toxicology biomarkers and describes the strategies used in the selection and evaluation of such biomarkers in the context of developmental toxicity studies.Here,we discuss about the biological markers that are directly linked to developmental toxicity with respect to future revolutionary perspectives.Additionally,this chapter will address different associated outcomes of developmental exposure by intriguing advance techniques.The discussion focuses on the challenges associated with the development of biomarkers for developmental toxicity and highlights some of the recent advances in this area.Finally,the chapter concludes with a brief discussion of the future prospects for the use of molecular and cellular biology-based developmental toxicity biomarkers.Hope the present state of the art will provide a succinct summary of recent developments of biomarkers of developmental toxicology.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
BACKGROUND Neurodevelopmental-craniofacial syndrome with variable renal and cardiac abnormalities(NECRC)is a rare,autosomal,dominant neurological disorder caused by mutations in the ZMYM2 gene.To date,the clinical and...BACKGROUND Neurodevelopmental-craniofacial syndrome with variable renal and cardiac abnormalities(NECRC)is a rare,autosomal,dominant neurological disorder caused by mutations in the ZMYM2 gene.To date,the clinical and functional characteristics of the novel ZMYM2 mutation c.2090_2091del have not yet been reported.CASE SUMMARY The patient was an 18.5-mo-old Chinese boy with motor and language delay,microcephaly,facial dysmorphism,moderate malnutrition,single palmar crease on the left hand,synpolydactyly of the right foot,hypotonia and feeding problems.The boy who was diagnosed with NECRC was enrolled in the First Affiliated Hospital,Henan University of Chinese Medicine,and his clinical data were collected.From the whole-exon sequencing(WES)data,the pathogenic SNVs/InDels were identified,and the molecular findings were characterized.WES revealed that the heterozygous variant in the ZMYM2 gene was c.2090_20-91del,p.Ser697TrpfsTer3,a frameshift mutation,which is a NECRC-related gene mutation.CONCLUSION We performed a systematic literature review to identify and characterize NECRC.Substantial evidence from the literature indicated that patients with ZMYM2 gene mutation showed different degrees of intellectual disability,motor and language retardation,facial dysmorphism,and a few had congenital heart defects,kidney and urinary tract abnormalities.Early diagnosis and prompt management with comprehensive rehabilitation training are beneficial,but may not improve long-term outcomes.展开更多
Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiatio...Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation. WTK1 cells contain a p53 mutation, whereas the TK6 cell line has the native p53 tumor-suppressor gene. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. Using probes that target specific regions on chromosomes associated with a distinct subset of microdeletions and microduplications either established or thought to be responsible for intellectual disability or developmental delay, we have demonstrated that WTK1 and TK6 are not impacted in the same way by irradiation. Instead, each cell line presents its own unique MLPA profile. The most notable differences are the appearance of nine unique probe signals only seen in WTK1 cells. These results are important in the study of how different cell lines can be affected in significantly different ways depending on the presence or absence of wild type p53.展开更多
Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not...Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.展开更多
Over the past few decades,genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock.However,the rapid growth rates of modern bree...Over the past few decades,genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock.However,the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnor‑malities,impairing meat quality and processing functionality.Early stages of animal development set the long‑term growth trajectory of offspring.However,due to the seasonal reproductive cycles of ruminant livestock,gestational nutrient deficiencies caused by seasonal variations,frequent droughts,and unfavorable geological locations nega‑tively affect fetal development and their subsequent production efficiency and meat quality.Therefore,enrolling live‑stock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest.These crucial early developmental stages include embryonic,fetal,and postnatal stages,which have stage‑specific effects on subsequent offspring development,body composition,and meat quality.This review summarizes contemporary research in the embryonic,fetal,and neonatal development,and the impacts of maternal nutrition on the early development and programming effects on the long‑term growth performance of livestock.Understanding the developmental and metabolic characteristics of skeletal muscle,adipose,and fibrotic tissues will facilitate the development of stage‑specific nutritional management strategies to optimize production efficiency and meat quality.展开更多
Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and h...Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and heredity.Cold regions are mainly located in the high latitudes of China.Their living environment is characterized by frequent cold wave,huge temperature difference,severe air pollution,high calorie diet,less exercise,smoking,drinking,etc.In recent years,substantial advances have been made in studies of the correlation between the living environment features in cold regions and the DDs.Accordingly,this article reviews the impact of the peculiar living environment of cold regions on DDs,with a view to provide fresh prevention strategies for reducing the morbidity of DDs in China cold regions by ameliorating living environment.展开更多
As one of the important means to spread Chinese traditional culture,Chinese-style animation has been on the rise in recent years.Many excellent works have emerged,among which the Chinese animated short film series Yao...As one of the important means to spread Chinese traditional culture,Chinese-style animation has been on the rise in recent years.Many excellent works have emerged,among which the Chinese animated short film series Yao-Chinese Folktales is one of the good representatives.It aroused a strong reaction from the audience as soon as it was released on the Internet,and gave the audience a shock to their mind and vision,which has brought some thoughts to the development of Chinese-style animation.Following a linear logic chain of past-present-future Chinese-style animation’s development,this paper takes Yao-Chinese Folktales as an example and analyzes the developmental difficulties and prospects of Chinese-style animation.At the end of the paper,some suggestions about the development path of Chinese-style animation’s future are given from the aspects of creation and dissemination,for the aim of promoting the Chinese-style animation’s development and spreading the Chinese traditional culture.展开更多
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re...Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.展开更多
Drug abuse by pregnant women is one of the significant problems for mothers and their neonates.This study aimed to investigate the effects of maternal substance use disorder during pregnancy on neonatal developmental ...Drug abuse by pregnant women is one of the significant problems for mothers and their neonates.This study aimed to investigate the effects of maternal substance use disorder during pregnancy on neonatal developmental criteria.In a case-control study,clinical records of 90 neonates diagnosed with neonatal abstinence syndrome who were admitted to NICU in one of four hospitals affiliated with Shahid-Beheshti University of Medical Sciences in Tehran,Iran between 2017 and 2020 were compared to 90 neonates without neonatal abstinence syndrome(control group).Demographic information and data for neonatal developmental characteristics and complications were extracted from the clinical records of this convenience sample.Data for the type and method of maternal substance use during pregnancy were collected through a telephone call with mothers.Our data showed that the prevalence of drug addiction was 1.8%among pregnant women,and the most common drugs used by mothers were opium(n=45%,50%),amphetamine(n=30%,33%),and methadone(n=14%,16%).Neonates with abstinence syndrome had a higher prevalence of transient tachypnea of the newborn(TTN)(P=0.004),and a prevalence of being admitted to NICU(P=0.05)and for a longer duration(P<0.001).Their mothers had a higher prevalence of having pre-eclampsia(P=0.010).Using morphine vs.amphetamine showed no difference based on their effects on mothers and neonates.Substance use during pregnancy increased the prevalence of pregnancy complications(pre-eclampsia)and neonatal complications(TTN and prevalence and duration of hospitalization).Therefore,planning for the development of health policies to raise awareness among women and more broadly,all members of the community,is important to prevent the tendency to engage in this potentially high-risk behavior.展开更多
FE65,initially identified as a binding partner of amyloid precursor protein(APP),is an adaptor protein enriched in the brain and regulated during development.FE65 belongs to the FE65 protein family.This family is comp...FE65,initially identified as a binding partner of amyloid precursor protein(APP),is an adaptor protein enriched in the brain and regulated during development.FE65 belongs to the FE65 protein family.This family is comprised of three members,FE65,FE65 like-1(FE65L1),and FE65 like-2(FE65L2).展开更多
文摘Background: The Air Force Health Study collected reproductive outcomes for live-born children of male Air Force veterans of the Vietnam War. Methods: Dioxin values for participants were obtained from blood samples. Analyses were conducted of occurrence of 16 specific categories of birth defects and developmental disabilities. Children were categorized as conceived before and after the start of participants’ Vietnam War service. Children conceived before the start of Vietnam War service were treated as being conceived when their fathers had unquantifiable dioxin values. Children conceived after the start of Vietnam War service for participants with missing dioxin values were excluded from primary analyses, but were used to assess the impact of their exclusion on conclusions. Correlation between values for specific categories for multiple children fathered by the same participant was accounted for. The dose-response relationship was treated as a step function increasing for dioxin values larger than adaptively identified individual thresholds changing with the specific category. Results: For 15 of 16 specific categories, the probability of occurrence increased substantially for a sufficiently high dioxin level above identified thresholds. Exclusion of children due to missing dioxin likely did not affect these results. Conclusions: Results supported the conclusion of substantial adverse effects on a wide variety of specific categories of birth defects and developmental disabilities due to sufficiently high exposures to dioxin, a toxic contaminant of Agent Orange used for herbicide spraying in the Vietnam War. Results may hold more generally, but might also have been affected by a variety of limitations.
基金funded by the National Natural Science Foundation of China(32071515 to S.Z.)Graduate Research and Practice Projects of Minzu University of China(SZKY2024035 to R.Z.)。
文摘Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.
基金supported by the National Natural Science Foundation of China(31790410,32160781)。
文摘The gastrointestinal tract is essential for food digestion,nutrient absorption,waste elimination,and microbial defense.Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity,functional heterogeneity,and their importance in intestinal tract development and disease.Although such profiling has been extensively conducted in humans and mice,the single-cell gene expression landscape of the pig cecum remains unexplored.Here,single-cell RNA sequencing was performed on 45572 cells obtained from seven cecal samples in pigs at four different developmental stages(days(D)30,42,150,and 730).Analysis revealed 12 major cell types and 38 subtypes,as well as their distinctive genes,transcription factors,and regulons,many of which were conserved in humans.An increase in the relative proportions of CD8^(+)T and Granzyme A(low expression)natural killer T cells(GZMA^(low)NKT)cells and a decrease in the relative proportions of epithelial stem cells,Tregs,RHEX^(+)T cells,and plasmacytoid dendritic cells(pDCs)were noted across the developmental stages.Moreover,the post-weaning period exhibited an up-regulation in mitochondrial genes,COX2 and ND2,as well as genes involved in immune activation in multiple cell types.Cell-cell crosstalk analysis indicated that IBP6^(+)fibroblasts were the main signal senders at D30,whereas IBP6^(−)fibroblasts assumed this role at the other stages.NKT cells established interactions with epithelial cells and IBP6^(+)fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs.This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.
文摘BACKGROUND Developmental dysplasia of the hip(DDH)is a common osteoarticular deformity in pediatric orthopedics.A patient with bilateral DDH was diagnosed and treated using our improved technique"(powerful overturning acetabuloplasty)"combined with femoral rotational shortening osteotomy.CASE SUMMARY A 4-year-old girl who was diagnosed with bilateral DDH could not stand normally,and sought surgical treatment to solve the problem of double hip extension and standing.As this child had high dislocation of the hip joint and the acetabular index was high,we changed the traditional acetabuloplasty to"powerful turnover acetabuloplasty"combined with femoral rotation shortening osteotomy.During the short-term postoperative follow-up(1,3,6,9,12,and 15 months),the child had no discomfort in her lower limbs.After the braces and internal fixation plates were removed,formal rehabilitation training was actively carried out.CONCLUSION Our"powerful overturning acetabuloplasty"combined with femoral rotational shortening osteotomy is feasible in the treatment of DDH in children.This technology may be widely used in the clinic.
文摘The present study aims to establish a literature review on intervention programs for executive functions(EFs)through the use of fundamental motor skills,from a neuropsychopedagogical perspective in subjects with Developmental Coordination Disorder(DCD).An exploratory study was carried out through an integrative literature review.The research was carried out in the Scientific databases Electronic Library Online(SciELO),Latin American and Caribbean Literature in Health Sciences(LILACS),Virtual Health Library-Psychology Brazil(BVSPSI),Electronic Journals of Psychology(PePSIC),in the periodicals available in the Brazilian Digital Library of Theses and Dissertations(BDTD)and on the website of the Coordination for the Improvement of Higher Education Personnel(CAPES).The covering publications took place from 2018 to 2023,14 articles were selected for analysis.This literature review made it possible to create strategies for stimulating EF and Visuomotor Functions so that educators and other professionals can better deal with students with DCD.It was perceived the need to carry out and develop more empirical research regarding the intervention of EFs and Visuomotor Functions by educators and professionals,with a greater sampling amplitude,to increase the number of studies that enable interventions both in children and in teenagers with DCD.
基金supported by the Ministry of EducationScience and Technology(No.2021M3A9A1096894)+1 种基金Republic of Korea and the KRIBB Research Initiative Program(KGM4252223)Korea Research Institute of Bioscience and Biotechnology,Republic of Korea。
文摘Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embryonic development.Therefore,we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.Results We cultured porcine in vitro-fertilized embryos in medium with AN(0,0.3,0.5,and 1 mg/mL)for 6 d.AN at 0.5 mg/mL significantly increased the blastocyst formation rate,trophectoderm cell number,and cellular survival rate compared to the control.AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control.Moreover,AN significantly improved the quantity of mitochondria and mitochondrial membrane potential,and increased the lipid droplet,fatty acid,and ATP levels.Interestingly,the levels of proteins and genes related to the sonic hedgehog(SHH)signaling pathway were significantly increased by AN.Conclusions These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.
基金Supported by Scientific Research Project of Hunan Education Department,No.21A0054.
文摘Developmental dysplasia of hip seriously affects the health of children,and pelvic osteotomy is an important part of surgical treatment.Improving the shape of the acetabulum,preventing or delaying the progression of osteoarthritis is the ultimate goal of pelvic osteotomies.Re-directional osteotomies,reshaping osteotomies and salvage osteotomies are the three most common types of pelvic osteotomy.The influence of different pelvic osteotomy on acetabular morphology is different,and the acetabular morphology after osteotomy is closely related to the prognosis of the patients.But there lacks comparison of acetabular morphology between different pelvic osteotomies,on the basis of retrospective analysis and measurable imaging indicators,this study predicted the acetabular shape after developmental dysplasia of the hip pelvic osteotomy in order to help clinicians make reasonable and correct decisions and improve the planning and performance of pelvic osteotomy.
基金supported by the National Key Research and Development Program of China(2022YFD1200500)the Fundamental Research Funds for the Central Universities(KYZZ2022004)+1 种基金the Project for Crop Germplasm Resources Conservation of Jiangsu(2021-SJ-011)the High Level Talent Project of the Top Six Talents in Jiangsu(NY-077)。
文摘Lily(Lilium spp.)is an important horticultural crop,but its use is limited due to serious pollen contamination problems.There are many studies on pollen development in model plants,but few on flower crops such as lilies.Gibberellin(GA)is a large class of hormones and plays an important role in plant vegetative growth and reproductive development.GAMYB is a group of the R2R3-MYB family upregulated by gibberellin,and plays an important role in anther development.Here,we isolated a novel GAMYB,named LoMYB65,from lily,which was closely related to the AtMYB65 and AtMYB33 in Arabidopsis.Fluorescence quantitative PCR results showed that LoMYB65 was mainly expressed in lily anthers.LoMYB65 could be activated by 288μmol·L^(-1)GA3treatment and the LoMYB65 protein was located in the nucleus and cytoplasm,and had transactivation in yeast and tobacco leaf cells.The conserved motif within 226 amino acids of the C-terminal of LoMYB65 contributed to its transactivation.Overexpression of LoMYB65 caused dwarf phenotype,unnormal tapetum development,less seeds of siliques in transgenic Arabidopsis plants,the transgenic plants showed partly male sterile.Simultaneously,silencing of LoMYB65 with VIGS(Virus Induced Gene Silencing)in lily anthers caused unnormal pollen development and reduced the pollen amount.Overexpression of LoMYB65 in Arabidopsis and silencing of LoMYB65 in lily resulted in decreased pollen counts,so we speculate that LoMYB65 may be dose-dependent.Overall,these findings suggest that LoMYB65 may play an important role in anther development and pollen formation in lily.LoMYB65 may provide a useful candidate gene for pollenless breeding of lily.
基金Sponsored by 2022 Teaching Reform Project of Lingnan Normal University(000302201830)2022 Model Course of Lingnan Normal University(LingShiJiaoWu(2014)No.125)2023 Undergraduate Students’Innovation and entrepreneurship Planning of Lingnan Normal University(X202310579049X).
文摘Recycling of junks is positive for the environmental protection.Along with the proposal of three-child policy,purchase volume of milk powder surely will experience a drastic growth,and the milk powder spoon as an affiliated product will win the attention of parents.Against the background of consumption upgrading,consumers have had higher requirements on the humanization and safety design of products.Most of milk powder spoons on the market are plastic,and the disposal of waste milk powder spoon has gradually become a burden for the environment.Based on the environment-friendly and developmental concept,and also the characteristics of infant development,this paper proposed the“in-one”design,applied color and tactile designs into the milk powder design,chose food grade silicone to make the milk powder spoon not only a spoon but also a baby teether toy,so as to expand the service life and functions of the product,meet the requirements of saving energy,protecting environment and developing circular economy,which also to some extent reduces the burden on environment brought by plastics,improves the efficiency of junk recycling,and meet the individualized needs of consumers.
文摘The process of development is intricate and couple-dependent phenomenon.Accordingly,the study of molecular and cellular biology-based developmental toxicology biomarkers increasingly is becoming an important part of risk assessment and management of chemicals for detection of health outcomes and/or biological endpoint like cytotoxicity,cell death,etc.Since,the evolution of developmental toxicology field a number of tools/markers have been developed or addressed to deal with developmental outcomes,which can ultimately be used for the development of adverse outcome pathways(AOPs)of developmental toxicants.As a result,this paper provides an overview of the current state of developmental toxicology biomarkers and describes the strategies used in the selection and evaluation of such biomarkers in the context of developmental toxicity studies.Here,we discuss about the biological markers that are directly linked to developmental toxicity with respect to future revolutionary perspectives.Additionally,this chapter will address different associated outcomes of developmental exposure by intriguing advance techniques.The discussion focuses on the challenges associated with the development of biomarkers for developmental toxicity and highlights some of the recent advances in this area.Finally,the chapter concludes with a brief discussion of the future prospects for the use of molecular and cellular biology-based developmental toxicity biomarkers.Hope the present state of the art will provide a succinct summary of recent developments of biomarkers of developmental toxicology.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金Supported by the National Natural Science Foundation of China,No.82205190the Foundation for Distinguished Young Talents in Higher Education of Henan,No.[2018]16
文摘BACKGROUND Neurodevelopmental-craniofacial syndrome with variable renal and cardiac abnormalities(NECRC)is a rare,autosomal,dominant neurological disorder caused by mutations in the ZMYM2 gene.To date,the clinical and functional characteristics of the novel ZMYM2 mutation c.2090_2091del have not yet been reported.CASE SUMMARY The patient was an 18.5-mo-old Chinese boy with motor and language delay,microcephaly,facial dysmorphism,moderate malnutrition,single palmar crease on the left hand,synpolydactyly of the right foot,hypotonia and feeding problems.The boy who was diagnosed with NECRC was enrolled in the First Affiliated Hospital,Henan University of Chinese Medicine,and his clinical data were collected.From the whole-exon sequencing(WES)data,the pathogenic SNVs/InDels were identified,and the molecular findings were characterized.WES revealed that the heterozygous variant in the ZMYM2 gene was c.2090_20-91del,p.Ser697TrpfsTer3,a frameshift mutation,which is a NECRC-related gene mutation.CONCLUSION We performed a systematic literature review to identify and characterize NECRC.Substantial evidence from the literature indicated that patients with ZMYM2 gene mutation showed different degrees of intellectual disability,motor and language retardation,facial dysmorphism,and a few had congenital heart defects,kidney and urinary tract abnormalities.Early diagnosis and prompt management with comprehensive rehabilitation training are beneficial,but may not improve long-term outcomes.
文摘Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation. WTK1 cells contain a p53 mutation, whereas the TK6 cell line has the native p53 tumor-suppressor gene. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. Using probes that target specific regions on chromosomes associated with a distinct subset of microdeletions and microduplications either established or thought to be responsible for intellectual disability or developmental delay, we have demonstrated that WTK1 and TK6 are not impacted in the same way by irradiation. Instead, each cell line presents its own unique MLPA profile. The most notable differences are the appearance of nine unique probe signals only seen in WTK1 cells. These results are important in the study of how different cell lines can be affected in significantly different ways depending on the presence or absence of wild type p53.
基金supported by grants from the National Health and Medical Research Council(NHMRC)of Australia(Nos.571100 and 1048082)the Baxter Charitable Foundation(to TCL)+1 种基金Medical Research grants from the Rebecca L.Cooper Medical Research Foundation(to MWW,TCL,and MDL)supported by a Charles D.Kelman,M.D.Postdoctoral Award(2010)from the International Retinal Research Foundation(USA)。
文摘Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.
基金supported by the Agriculture and Food Research Initiative Competitive Grants(No.2015-67015-23219 and 2016-68006-24634)from the USDA National Institute of Food and Agriculture.
文摘Over the past few decades,genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock.However,the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnor‑malities,impairing meat quality and processing functionality.Early stages of animal development set the long‑term growth trajectory of offspring.However,due to the seasonal reproductive cycles of ruminant livestock,gestational nutrient deficiencies caused by seasonal variations,frequent droughts,and unfavorable geological locations nega‑tively affect fetal development and their subsequent production efficiency and meat quality.Therefore,enrolling live‑stock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest.These crucial early developmental stages include embryonic,fetal,and postnatal stages,which have stage‑specific effects on subsequent offspring development,body composition,and meat quality.This review summarizes contemporary research in the embryonic,fetal,and neonatal development,and the impacts of maternal nutrition on the early development and programming effects on the long‑term growth performance of livestock.Understanding the developmental and metabolic characteristics of skeletal muscle,adipose,and fibrotic tissues will facilitate the development of stage‑specific nutritional management strategies to optimize production efficiency and meat quality.
基金This work was supported by the Key Project of Harbin Medical University Cultivation Fund.
文摘Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and heredity.Cold regions are mainly located in the high latitudes of China.Their living environment is characterized by frequent cold wave,huge temperature difference,severe air pollution,high calorie diet,less exercise,smoking,drinking,etc.In recent years,substantial advances have been made in studies of the correlation between the living environment features in cold regions and the DDs.Accordingly,this article reviews the impact of the peculiar living environment of cold regions on DDs,with a view to provide fresh prevention strategies for reducing the morbidity of DDs in China cold regions by ameliorating living environment.
文摘As one of the important means to spread Chinese traditional culture,Chinese-style animation has been on the rise in recent years.Many excellent works have emerged,among which the Chinese animated short film series Yao-Chinese Folktales is one of the good representatives.It aroused a strong reaction from the audience as soon as it was released on the Internet,and gave the audience a shock to their mind and vision,which has brought some thoughts to the development of Chinese-style animation.Following a linear logic chain of past-present-future Chinese-style animation’s development,this paper takes Yao-Chinese Folktales as an example and analyzes the developmental difficulties and prospects of Chinese-style animation.At the end of the paper,some suggestions about the development path of Chinese-style animation’s future are given from the aspects of creation and dissemination,for the aim of promoting the Chinese-style animation’s development and spreading the Chinese traditional culture.
基金Supported by the Natural Science Foundation of Anhui Province,No.2008085MH251Key Research and Development Project of Anhui Province,No.202004J07020037+1 种基金Anhui Provincial Institute of Translational Medicine,No.2021zhyx-C19National Undergraduate Innovation and Entrepreneurship training program,No.202010366016。
文摘Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.
文摘Drug abuse by pregnant women is one of the significant problems for mothers and their neonates.This study aimed to investigate the effects of maternal substance use disorder during pregnancy on neonatal developmental criteria.In a case-control study,clinical records of 90 neonates diagnosed with neonatal abstinence syndrome who were admitted to NICU in one of four hospitals affiliated with Shahid-Beheshti University of Medical Sciences in Tehran,Iran between 2017 and 2020 were compared to 90 neonates without neonatal abstinence syndrome(control group).Demographic information and data for neonatal developmental characteristics and complications were extracted from the clinical records of this convenience sample.Data for the type and method of maternal substance use during pregnancy were collected through a telephone call with mothers.Our data showed that the prevalence of drug addiction was 1.8%among pregnant women,and the most common drugs used by mothers were opium(n=45%,50%),amphetamine(n=30%,33%),and methadone(n=14%,16%).Neonates with abstinence syndrome had a higher prevalence of transient tachypnea of the newborn(TTN)(P=0.004),and a prevalence of being admitted to NICU(P=0.05)and for a longer duration(P<0.001).Their mothers had a higher prevalence of having pre-eclampsia(P=0.010).Using morphine vs.amphetamine showed no difference based on their effects on mothers and neonates.Substance use during pregnancy increased the prevalence of pregnancy complications(pre-eclampsia)and neonatal complications(TTN and prevalence and duration of hospitalization).Therefore,planning for the development of health policies to raise awareness among women and more broadly,all members of the community,is important to prevent the tendency to engage in this potentially high-risk behavior.
文摘FE65,initially identified as a binding partner of amyloid precursor protein(APP),is an adaptor protein enriched in the brain and regulated during development.FE65 belongs to the FE65 protein family.This family is comprised of three members,FE65,FE65 like-1(FE65L1),and FE65 like-2(FE65L2).