In order to improve the machining ac cu racy of spiral bevel gear,difference surface was adopted to characterize its gl obal form deviations quantifiably and correct its deviations.The theoretical to oth surface model...In order to improve the machining ac cu racy of spiral bevel gear,difference surface was adopted to characterize its gl obal form deviations quantifiably and correct its deviations.The theoretical to oth surface model of spiral bevel gear was built,and the actual tooth surface o f spiral bevel gear had been got by using latticed measurement.The equation of difference surface which can characterize the actual tooth surface deviation s was built by means of mathematical method in combination with measurement prin ciple.The quantitative mathematical relationship between the actual tooth surfa ce deviations of spiral bevel gear and the corrected values of the machine-sett ing parameters had been referred,and the theoretical correction formula of the global form deviations had been got by the least square method.Finally,the pinion of spiral bevel gear in the automobile rear axle has been set for an exam ple to account for the effectiveness of the deviation correction by use of the d ifference surface method.展开更多
In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both t...In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.展开更多
基金National Natural Science Foundation of China(No.50976108)
文摘In order to improve the machining ac cu racy of spiral bevel gear,difference surface was adopted to characterize its gl obal form deviations quantifiably and correct its deviations.The theoretical to oth surface model of spiral bevel gear was built,and the actual tooth surface o f spiral bevel gear had been got by using latticed measurement.The equation of difference surface which can characterize the actual tooth surface deviation s was built by means of mathematical method in combination with measurement prin ciple.The quantitative mathematical relationship between the actual tooth surfa ce deviations of spiral bevel gear and the corrected values of the machine-sett ing parameters had been referred,and the theoretical correction formula of the global form deviations had been got by the least square method.Finally,the pinion of spiral bevel gear in the automobile rear axle has been set for an exam ple to account for the effectiveness of the deviation correction by use of the d ifference surface method.
文摘In assemblies constructed from components manufactured with radial deviations, cross-section deviations and deviations being combination of both, there occur variable values of local stresses and displacements. Both the types of shape deviations and their values need to be taken into account in the designing process and play an important role during machine operation. They have a crucial effect on the value and scatter of maximum reduced von Mises stresses and contact stresses. Axisymmetric joints were examined, in which shafts in selected shape variants and in variable angular positions were associated with a non-deformable hole. The aspects of contact zone problems are presented using the example of numerical simulation of contact between an elliptical saddle-shaped shaft placed in a rigid, non-deformable hole in different angular positions. Occurrence of both variable relative stresses and contact stresses as well as shaft's axial shift and rotary movement resistance were demonstrated.