To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robu...To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.展开更多
Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the fe...Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the feasibility of the method,the model and construction of the localization system are detailed.And static and dynamic accuracy of the localization system are tested by experiments.Next,we compare the simulating results of the electromagnetic radiation aroused by the localization system with the electromagnetic safety standards of human(ICNIRP guidelines and IEEE standard C95.1-1991).Finally,in terms of the results of the static and dynamic experiments,conclusions are drawn that the accuracy of portable positioning system is high(less than 10 mm)enough to satisfy the localization need of the micro invasive medical devices in vivo,and there is no harm of electromagnetic radiation to human.展开更多
The structure of key-value data is a typical data structure generated by mobile devices.The collection and analysis of the data from mobile devices are critical for service providers to improve service quality.Neverth...The structure of key-value data is a typical data structure generated by mobile devices.The collection and analysis of the data from mobile devices are critical for service providers to improve service quality.Nevertheless,collecting raw data,which may contain various per⁃sonal information,would lead to serious personal privacy leaks.Local differential privacy(LDP)has been proposed to protect privacy on the device side so that the server cannot obtain the raw data.However,existing mechanisms assume that all keys are equally sensitive,which can⁃not produce high-precision statistical results.A utility-improved data collection framework with LDP for key-value formed mobile data is pro⁃posed to solve this issue.More specifically,we divide the key-value data into sensitive and non-sensitive parts and only provide an LDPequivalent privacy guarantee for sensitive keys and all values.We instantiate our framework by using a utility-improved key value-unary en⁃coding(UKV-UE)mechanism based on unary encoding,with which our framework can work effectively for a large key domain.We then vali⁃date our mechanism which provides better utility and is suitable for mobile devices by evaluating it in two real datasets.Finally,some pos⁃sible future research directions are envisioned.展开更多
The momentary state of a semiconductor device is described by a system of three nonlinear partial differential equations. A finite difference scheme for simulating transient behaviors of a semiconductor device on grid...The momentary state of a semiconductor device is described by a system of three nonlinear partial differential equations. A finite difference scheme for simulating transient behaviors of a semiconductor device on grids with local refinement in time and space is constructed and studied. Error analysis is presented and is illustrated by numerical examples.展开更多
To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the...To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.展开更多
Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery devi...Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery device,?and?associated gas-solid heat transfer and energy utilization performance with different pipeline arrangement, pipe diameter and shape of internal component are further analyzed. The temperatures of gas and particle in device with pipeline bundle periodically fluctuate in horizontal direction, and those in staggered system distribute more uniformly than those in paralleled system. Compared with paralleled device, exergy and waste heat utilization efficiency of staggered device have been improved, and they are both higher than?those without pipeline. As pipe diameter increases, exergy and waste heat utilization efficiency first increases and then decreases, and they reach the maxima with optimal pipe diameter.?As the width of internal component keeps constant, influence of its shape on heat transfer is very little.展开更多
The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differenti...The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.展开更多
The challenges we are faced with in localizing objects are the complex environments,such as tunnels,high-rise areas and underground parking lots.This paper develops a bionic vibration source localization device to est...The challenges we are faced with in localizing objects are the complex environments,such as tunnels,high-rise areas and underground parking lots.This paper develops a bionic vibration source localization device to estimate the direction of the object which is inspired by the unique and precise hunting localization mechanism of scorpions.The localization device uses the sensor array,which is patterned after the scorpions5 biological sensory structure,and imitates the coding mode of scorpions,sensory neurons for determination of the prey(vibration source)bearing.To verify the effectiveness of the localization device,some experiments were performed through real collected vibration signals.The Average Estimated Error(AEE)and the Relative Estimated Error(REE)of the experimental results were calculated to be 3.64°土2.44°and-1.43°±4.14°,respectively.It indicates that the device has a good performance to estimate the bearings of vibration sources at different distances and azimuths.This bionic localization device lays the foundation for the development of locating the moving object in some special conditions.展开更多
基金The National Key Research and Development Program of China(No.2018YFB1802400)the National Natural Science Foundation of China(No.61571123)the Research Fund of National M obile Communications Research Laboratory,Southeast University(No.2020A03)
文摘To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.
基金National Natural Science Foundation of China(NSFC)(No.30570485)National High Technology Research and Development Program of China(863)(No.2006AA04Z368)Natural Science Foundation of Shanghai,China(No.06ER1406)
文摘Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the feasibility of the method,the model and construction of the localization system are detailed.And static and dynamic accuracy of the localization system are tested by experiments.Next,we compare the simulating results of the electromagnetic radiation aroused by the localization system with the electromagnetic safety standards of human(ICNIRP guidelines and IEEE standard C95.1-1991).Finally,in terms of the results of the static and dynamic experiments,conclusions are drawn that the accuracy of portable positioning system is high(less than 10 mm)enough to satisfy the localization need of the micro invasive medical devices in vivo,and there is no harm of electromagnetic radiation to human.
文摘The structure of key-value data is a typical data structure generated by mobile devices.The collection and analysis of the data from mobile devices are critical for service providers to improve service quality.Nevertheless,collecting raw data,which may contain various per⁃sonal information,would lead to serious personal privacy leaks.Local differential privacy(LDP)has been proposed to protect privacy on the device side so that the server cannot obtain the raw data.However,existing mechanisms assume that all keys are equally sensitive,which can⁃not produce high-precision statistical results.A utility-improved data collection framework with LDP for key-value formed mobile data is pro⁃posed to solve this issue.More specifically,we divide the key-value data into sensitive and non-sensitive parts and only provide an LDPequivalent privacy guarantee for sensitive keys and all values.We instantiate our framework by using a utility-improved key value-unary en⁃coding(UKV-UE)mechanism based on unary encoding,with which our framework can work effectively for a large key domain.We then vali⁃date our mechanism which provides better utility and is suitable for mobile devices by evaluating it in two real datasets.Finally,some pos⁃sible future research directions are envisioned.
基金Supported by the Major State Basic Research of China (Grant No. G1999032803)the National Natural Science Foundation of China (Grant No. 10372052,10271066)the Doctorate Foundation of the Ministry of Education of China (Grant No. 20030422047).
文摘The momentary state of a semiconductor device is described by a system of three nonlinear partial differential equations. A finite difference scheme for simulating transient behaviors of a semiconductor device on grids with local refinement in time and space is constructed and studied. Error analysis is presented and is illustrated by numerical examples.
基金The National Natural Science Foundation of China(No.61473088)Six Talent Peaks Projects in Jiangsu Province
文摘To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.
文摘Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery device,?and?associated gas-solid heat transfer and energy utilization performance with different pipeline arrangement, pipe diameter and shape of internal component are further analyzed. The temperatures of gas and particle in device with pipeline bundle periodically fluctuate in horizontal direction, and those in staggered system distribute more uniformly than those in paralleled system. Compared with paralleled device, exergy and waste heat utilization efficiency of staggered device have been improved, and they are both higher than?those without pipeline. As pipe diameter increases, exergy and waste heat utilization efficiency first increases and then decreases, and they reach the maxima with optimal pipe diameter.?As the width of internal component keeps constant, influence of its shape on heat transfer is very little.
基金supported the Natural Science Foundation of Shandong Province(ZR2016AM08)Natural Science Foundation of Hunan Province(2018JJ2028)National Natural Science Foundation of China(11871312).
文摘The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.
基金This work is financially supported by Research Funds for High-level Scientific and Technological Innovation Teams of Jilin University(No.2017TD-04)the Major Program of the National Natural Science Foundation(NNSF)of China(No.51835006).
文摘The challenges we are faced with in localizing objects are the complex environments,such as tunnels,high-rise areas and underground parking lots.This paper develops a bionic vibration source localization device to estimate the direction of the object which is inspired by the unique and precise hunting localization mechanism of scorpions.The localization device uses the sensor array,which is patterned after the scorpions5 biological sensory structure,and imitates the coding mode of scorpions,sensory neurons for determination of the prey(vibration source)bearing.To verify the effectiveness of the localization device,some experiments were performed through real collected vibration signals.The Average Estimated Error(AEE)and the Relative Estimated Error(REE)of the experimental results were calculated to be 3.64°土2.44°and-1.43°±4.14°,respectively.It indicates that the device has a good performance to estimate the bearings of vibration sources at different distances and azimuths.This bionic localization device lays the foundation for the development of locating the moving object in some special conditions.