Epidural electrical stimulation is a new treatment method for spinal cord injury(SCI).Its efficacy and safety have previously been reported.Rehabilitation treatment after epidural electrical stimulation is important t...Epidural electrical stimulation is a new treatment method for spinal cord injury(SCI).Its efficacy and safety have previously been reported.Rehabilitation treatment after epidural electrical stimulation is important to ensure and improve the postoperative efficacy of epidural electrical stimulation in patients with SCI.Considering that electromyography(EMG)-induced rehabilitation treatment can accurately match the muscle contraction of patients with SCI,we designed a study protocol for a prospective,randomized controlled trial.In this trial,on the premise of adjusting the spinal cord electrical stimulator to obtain the maximum EMG signal of the target muscle,patients with SCI receiving epidural electrical stimulation will undergo EMG-induced rehabilitation treatment.Recovery of muscle strength of key muscles,quality of life,safety and therapeutic effects will be monitored.Twenty patients with SCI who are scheduled to undergo epidural electrical stimulation in Shanghai Ruijin Rehabilitation Hospital will be randomly divided into two groups with 10 patients per group.The control group will receive conventional rehabilitation treatment.The EMG-induced rehabilitation group will receive EMG-induced rehabilitation treatment of the target muscles of the upper and lower limbs based on conventional rehabilitation treatment.After rehabilitation treatment,follow up for all patients will occur at 2 weeks and 1,3 and 6 months.The primary outcome measure of this trial will be evaluation of target muscle recovery using the Manual Muscle Testing grading scale.Secondary outcome measures will include modified Barthel Index scores,integrated EMG values,the visual analogue scale,Spinal Cord Independence Measure scores,and modified Ashworth scale scores.The safety indicator will be the incidence of adverse events.This trial will collect data regarding the therapeutic effects of EMG-induced rehabilitation in patients with SCI receiving epidural electrical stimulation for 6 months after rehabilitation treatment.Findings from this trial will help develop rehabilitation methods in patients with SCI after epidural electrical stimulation.This study protocol was approved by Ethics Committee of Shanghai Ruijin Rehabilitation Hospital(Approval No.RKIRB2022-12)on February 15,2022 and was registered with Chinese Clinical Trial Registry(registration number:ChiCTR2200061674;date:June 30,2022).Study protocol version:1.0.展开更多
Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat scia...Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.展开更多
Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the mot...Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the motor/generator mode requires frequent switching and prolonged operation during driving.In this case,the motor temperature will unavoidably rise,potentially triggering motor thermal protection(MTP).Activating MTP increases the risk of motor component failure,and the EV typically disables the BER function.Thus,maximizing BER while reducing the risk of motor overheating is a challenging problem.To address this issue,this article proposes a predictive BER strategy with MTP using the non-smooth Pontryagin Minimum Principle(NSPMP)for EVs.Firstly,a Markov long short-term memory(MLSTM)model is designed to obtain future velocity information.Secondly,the BER problem with MTP in the studied EV is embedded in a model predictive control(MPC)framework.Then,under the MPC framework,the NSPMP strategy is proposed to resolve the problem of MTP.Finally,the performance of the proposed strategy is verified through simulation and a hardware-in-loop test.The results show that in two real-world driving cycles,compared to the rule-based strategy,the proposed strategy reduced power consumption by 1.24%and0.96%,respectively,and effectively limited motor temperature.Additionally,under global cycle conditions,this strategy demonstrated better MTP control performance compared to other benchmark strategies.展开更多
A comparison of three hydrometallurgical methods for selective recovery of copper from low-grade electric and electronic wastes was reported. Scraps were smelted to produce Cu?Zn?Sn?Ag alloy. Multiphase material wa...A comparison of three hydrometallurgical methods for selective recovery of copper from low-grade electric and electronic wastes was reported. Scraps were smelted to produce Cu?Zn?Sn?Ag alloy. Multiphase material was analyzed by SEM?EDS and XRD. The alloy was dissolved anodically with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions or leached in ammonia?ammonium sulfate solution and then copper electrowinning was carried out. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. Ammoniacal leaching of the alloy led to the accumulation of copper ions in the electrolyte and further metal electrowinning, but the rate of the spontaneous dissolution was low. Anodic dissolution of the alloy in the ammonia?ammonium sulfate solution led to the unfavorable distribution of metals among the slime, electrolyte and cathodic deposit.展开更多
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ...As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.展开更多
The relationship among annealing temperature, microstructure and electrical resistivity of Cu (8%~13%)Zn (mole fraction) alloys was studied. The results show that the relationship between the electrical resistivity o...The relationship among annealing temperature, microstructure and electrical resistivity of Cu (8%~13%)Zn (mole fraction) alloys was studied. The results show that the relationship between the electrical resistivity of cold deformation CuZn alloy and annealing temperature is related to the recovery and recrystallization of the processes. The increments of electrical resistivity due to strain are restored mainly on the process of recovery and recrystallization. The room temperature resistivity of soft state alloys is linear to the Zn contents. The extended application of Matthissen rule on high concentration solid solution was discussed. [展开更多
Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usa...Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.展开更多
The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship b...The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.展开更多
为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对...为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对滑行工况下的不同滑行制动意图,判断电机制动力是否介入及何时介入,并根据驾驶员所需的滑行距离计算电机制动力的大小;然后,由台架试验获得前后电机外特性并建立前后电机最优利用效率模型;最后,利用Carsim和Simulink进行了联合仿真分析。仿真结果表明,在新欧洲驾驶循环(New European Driving Cycle,NEDC)工况下,与并联控制策略相比,能量回收率提升了13.64百分点;在滑行工况下可有效识别驾驶员需求滑行距离,提升了整车滑行经济性。展开更多
脉冲电场(Pulsed electric fields,PEF)是一种新型物理场加工技术,具有处理时间短、能耗低以及绿色环保等优点,近年来在回收农产品加工废弃物中活性物质的应用上展现出一定的潜力。本文对脉冲电场强化活性物质提取的作用机理以及优点进...脉冲电场(Pulsed electric fields,PEF)是一种新型物理场加工技术,具有处理时间短、能耗低以及绿色环保等优点,近年来在回收农产品加工废弃物中活性物质的应用上展现出一定的潜力。本文对脉冲电场强化活性物质提取的作用机理以及优点进行了综述。此外,本文也针对脉冲电场技术在回收不同类型加工废弃物中活性物质的应用进展进行了分类和详细概述,以期为农产品加工过程中副产物的高值化利用提供参考和指导。展开更多
基金supported by a grant from Shanghai Municipal Health Commission(General Program),No.202140221(to YB)Shanghai Municipal Key Clinical Specialty,No.shslczdzk02701。
文摘Epidural electrical stimulation is a new treatment method for spinal cord injury(SCI).Its efficacy and safety have previously been reported.Rehabilitation treatment after epidural electrical stimulation is important to ensure and improve the postoperative efficacy of epidural electrical stimulation in patients with SCI.Considering that electromyography(EMG)-induced rehabilitation treatment can accurately match the muscle contraction of patients with SCI,we designed a study protocol for a prospective,randomized controlled trial.In this trial,on the premise of adjusting the spinal cord electrical stimulator to obtain the maximum EMG signal of the target muscle,patients with SCI receiving epidural electrical stimulation will undergo EMG-induced rehabilitation treatment.Recovery of muscle strength of key muscles,quality of life,safety and therapeutic effects will be monitored.Twenty patients with SCI who are scheduled to undergo epidural electrical stimulation in Shanghai Ruijin Rehabilitation Hospital will be randomly divided into two groups with 10 patients per group.The control group will receive conventional rehabilitation treatment.The EMG-induced rehabilitation group will receive EMG-induced rehabilitation treatment of the target muscles of the upper and lower limbs based on conventional rehabilitation treatment.After rehabilitation treatment,follow up for all patients will occur at 2 weeks and 1,3 and 6 months.The primary outcome measure of this trial will be evaluation of target muscle recovery using the Manual Muscle Testing grading scale.Secondary outcome measures will include modified Barthel Index scores,integrated EMG values,the visual analogue scale,Spinal Cord Independence Measure scores,and modified Ashworth scale scores.The safety indicator will be the incidence of adverse events.This trial will collect data regarding the therapeutic effects of EMG-induced rehabilitation in patients with SCI receiving epidural electrical stimulation for 6 months after rehabilitation treatment.Findings from this trial will help develop rehabilitation methods in patients with SCI after epidural electrical stimulation.This study protocol was approved by Ethics Committee of Shanghai Ruijin Rehabilitation Hospital(Approval No.RKIRB2022-12)on February 15,2022 and was registered with Chinese Clinical Trial Registry(registration number:ChiCTR2200061674;date:June 30,2022).Study protocol version:1.0.
文摘Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon’s model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.
基金supported by the National Natural Science Foundation of China(Grant Nos.52275047,51975048)。
文摘Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the motor/generator mode requires frequent switching and prolonged operation during driving.In this case,the motor temperature will unavoidably rise,potentially triggering motor thermal protection(MTP).Activating MTP increases the risk of motor component failure,and the EV typically disables the BER function.Thus,maximizing BER while reducing the risk of motor overheating is a challenging problem.To address this issue,this article proposes a predictive BER strategy with MTP using the non-smooth Pontryagin Minimum Principle(NSPMP)for EVs.Firstly,a Markov long short-term memory(MLSTM)model is designed to obtain future velocity information.Secondly,the BER problem with MTP in the studied EV is embedded in a model predictive control(MPC)framework.Then,under the MPC framework,the NSPMP strategy is proposed to resolve the problem of MTP.Finally,the performance of the proposed strategy is verified through simulation and a hardware-in-loop test.The results show that in two real-world driving cycles,compared to the rule-based strategy,the proposed strategy reduced power consumption by 1.24%and0.96%,respectively,and effectively limited motor temperature.Additionally,under global cycle conditions,this strategy demonstrated better MTP control performance compared to other benchmark strategies.
基金Project(NNOTECH-2/IN2/18/181960/NCBR)supported by the National Centre for Research and Development,Poland
文摘A comparison of three hydrometallurgical methods for selective recovery of copper from low-grade electric and electronic wastes was reported. Scraps were smelted to produce Cu?Zn?Sn?Ag alloy. Multiphase material was analyzed by SEM?EDS and XRD. The alloy was dissolved anodically with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions or leached in ammonia?ammonium sulfate solution and then copper electrowinning was carried out. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. Ammoniacal leaching of the alloy led to the accumulation of copper ions in the electrolyte and further metal electrowinning, but the rate of the spontaneous dissolution was low. Anodic dissolution of the alloy in the ammonia?ammonium sulfate solution led to the unfavorable distribution of metals among the slime, electrolyte and cathodic deposit.
文摘As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.
文摘The relationship among annealing temperature, microstructure and electrical resistivity of Cu (8%~13%)Zn (mole fraction) alloys was studied. The results show that the relationship between the electrical resistivity of cold deformation CuZn alloy and annealing temperature is related to the recovery and recrystallization of the processes. The increments of electrical resistivity due to strain are restored mainly on the process of recovery and recrystallization. The room temperature resistivity of soft state alloys is linear to the Zn contents. The extended application of Matthissen rule on high concentration solid solution was discussed. [
文摘Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.
基金supported by a grant from State Key Laboratory of Resources and Environmental Information System,the National Natural Science Foundation of China,Grant Number 42201053the Program of China Scholarship Council,Grant Number 202209040027the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant Number KYCX21_1000,which are highly appreciated by the authors.
文摘The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.
文摘为进一步提高制动能量回收率,考虑不同工况下驾驶员不同制动意图所需的制动效果,提出了一种四驱电动汽车制动控制策略。首先,针对常规制动工况,基于常规制动意图识别,从制动能量回收率、稳定性和安全性角度分别设计控制策略;其次,针对滑行工况下的不同滑行制动意图,判断电机制动力是否介入及何时介入,并根据驾驶员所需的滑行距离计算电机制动力的大小;然后,由台架试验获得前后电机外特性并建立前后电机最优利用效率模型;最后,利用Carsim和Simulink进行了联合仿真分析。仿真结果表明,在新欧洲驾驶循环(New European Driving Cycle,NEDC)工况下,与并联控制策略相比,能量回收率提升了13.64百分点;在滑行工况下可有效识别驾驶员需求滑行距离,提升了整车滑行经济性。
文摘脉冲电场(Pulsed electric fields,PEF)是一种新型物理场加工技术,具有处理时间短、能耗低以及绿色环保等优点,近年来在回收农产品加工废弃物中活性物质的应用上展现出一定的潜力。本文对脉冲电场强化活性物质提取的作用机理以及优点进行了综述。此外,本文也针对脉冲电场技术在回收不同类型加工废弃物中活性物质的应用进展进行了分类和详细概述,以期为农产品加工过程中副产物的高值化利用提供参考和指导。