We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ...We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that ...From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.展开更多
The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reli...The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.展开更多
Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve bo...Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.展开更多
The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ...The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.展开更多
Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing met...Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing methods assume that sufficient samples of each failure mode are available,which may be unrealistic,especially for those modes of low occurrence frequency but with high risk.To address this issue,this work proposes a novel fault diagnosis method that only requires the power signals generated under normal RPS operations in the training stage.Specifically,the failure modes of RPS are distinguished through constructing a reasoning diagram,whose nodes are either binary logic problems or those that can be decomposed into the problems of the binary logic.Then,an unsupervised method for the signal segmentation and a fault detection method are combined to make decisions for each binary logic problem.Based on the results of decisions,the diagnostic rules are established to identify the failure modes.Finally,the data collected from multiple real-world RPSs are used for validation and the results demonstrate that the proposed method outperforms the benchmark in identifying the faults of RPSs.展开更多
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o...The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.展开更多
As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are mor...1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for ...The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.展开更多
A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in...A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.展开更多
Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or p...An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.展开更多
The mathematical topological rule was proposed to plot the predominance area diagram.Based on the phase rules,the components of In-S-O system were analyzed and the coexisting points of three condensed phases were dete...The mathematical topological rule was proposed to plot the predominance area diagram.Based on the phase rules,the components of In-S-O system were analyzed and the coexisting points of three condensed phases were determined.Combined with the topological rules and thermody namic calculation,four relation diagrams between the coexisting points of three condensed phases,which were denoted as α,β stable plane-topological diagram and unstable plane-topological diagram,were plotted for the In-S-O system.The results show that α stable plane topological diagram is in accordance with the predominance area diagram of In-S-O system plotted by traditional methods,which indicates that the new method is feasible to plot the predominance area diagram of In-S-O system.Meanwhile,β unstable plane-topological diagram can be used to elucidate the indium production with the bath smelting process.展开更多
After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines f...After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines fuzzy sets with influence diagram theory and considers the interaction among risk factors is proposed.Furthermore,an evaluation model of the supply chain default risk is established based on the research of default risk evaluation and the fuzzy influence diagram.First,the model takes the loss of risk as a valuable node,risk factors as random nodes,drawing a risk analysis influence diagram.Then,three kinds of fuzzy sets are defined,including state fuzzy sets,probabilistic fuzzy sets and a relation fuzzy matrix.Finally,by using the fuzzy algorithm to evaluate nodes,the probability of risk occurrence and the degrees of risk loss are obtained.On the basis of the model,an instance application is used to prove its utility and effectiveness.展开更多
An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was reco...An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.展开更多
基金the National Natural Science Foundation of China(Grant No.12004049).
文摘We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金financed from the grant of the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ-2023001)。
文摘From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.
文摘The article raises the question of what to do with one of the main achievements of metal science in recent years—binary phase diagrams. These diagrams play a key role in the science of alloys and therefore their reliability must be complete. However, the discovery of the “ordering-separation” phase transition, which showed that in binary alloys at certain temperatures the sign of the chemical interatomic interaction changes (and, consequently, the microstructure changes), forces us to reconsider our ideas about those areas. Currently, these areas are designated on diagrams as areas of a “disordered solid solution.” This article proposes, using transmission electron microscopy, to study all the so-called solid solution regions, and apply the results obtained to the studied regions of the phase diagram.
基金supported by the National Natural Science Foundation of China(No.61977029)the Fundamental Research Funds for the Central Universities,CCNU(No.3110120001).
文摘Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.
基金supported by Orient Resources Ltd.College of Earth Sciences,Jilin University。
文摘The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.
基金supported by National Key R&D Program of China(2022YFB2602203)Talent Fund of Beijing Jiaotong University(2021RC274,I22L00131)National Natural Science Foundation of China(U1934219,52202392,52022010,U22A2046,52172322,62271486,62120106011,52172323)。
文摘Railway Point System(RPS)is an important infrastructure in railway industry and its faults may have significant impacts on the safety and efficiency of train operations.For the fault diagnosis of RPS,most existing methods assume that sufficient samples of each failure mode are available,which may be unrealistic,especially for those modes of low occurrence frequency but with high risk.To address this issue,this work proposes a novel fault diagnosis method that only requires the power signals generated under normal RPS operations in the training stage.Specifically,the failure modes of RPS are distinguished through constructing a reasoning diagram,whose nodes are either binary logic problems or those that can be decomposed into the problems of the binary logic.Then,an unsupervised method for the signal segmentation and a fault detection method are combined to make decisions for each binary logic problem.Based on the results of decisions,the diagnostic rules are established to identify the failure modes.Finally,the data collected from multiple real-world RPSs are used for validation and the results demonstrate that the proposed method outperforms the benchmark in identifying the faults of RPSs.
基金Supported by R&D Program of Beijing Municipal Education Commission of China(Grant No.KZ200010009041)Beijing Municipal University Youth Top Talents Training Program of China(Grant No.CIT&TCD201704014)Natural Science Foundation of China(Grant No.51475003).
文摘The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
基金Financial support from the State Key Program of NNSFC (20836009)the NNSFCs (Grants 21106136, 21276194 and 21306136)
文摘1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
基金Project(74142000023) supported by Postdoctoral Science Foundation of Central South University,ChinaProject(2012M521547) supported by China Postdoctoral Science FoundationProject(721500452) supported by the Fundamental Research Funds for the Central Universities,China
文摘The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.
基金Project(51375328)supported by the National Natural Science Foundation of ChinaProject(20143009)supported by Graduates Innovation Project of Shanxi Province,ChinaProject(2015-036)supported by Shanxi Scholarship Council of China
文摘A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
文摘An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.
基金Project(2011AA061003)supported by the High-tech Research and Development Program of China
文摘The mathematical topological rule was proposed to plot the predominance area diagram.Based on the phase rules,the components of In-S-O system were analyzed and the coexisting points of three condensed phases were determined.Combined with the topological rules and thermody namic calculation,four relation diagrams between the coexisting points of three condensed phases,which were denoted as α,β stable plane-topological diagram and unstable plane-topological diagram,were plotted for the In-S-O system.The results show that α stable plane topological diagram is in accordance with the predominance area diagram of In-S-O system plotted by traditional methods,which indicates that the new method is feasible to plot the predominance area diagram of In-S-O system.Meanwhile,β unstable plane-topological diagram can be used to elucidate the indium production with the bath smelting process.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines fuzzy sets with influence diagram theory and considers the interaction among risk factors is proposed.Furthermore,an evaluation model of the supply chain default risk is established based on the research of default risk evaluation and the fuzzy influence diagram.First,the model takes the loss of risk as a valuable node,risk factors as random nodes,drawing a risk analysis influence diagram.Then,three kinds of fuzzy sets are defined,including state fuzzy sets,probabilistic fuzzy sets and a relation fuzzy matrix.Finally,by using the fuzzy algorithm to evaluate nodes,the probability of risk occurrence and the degrees of risk loss are obtained.On the basis of the model,an instance application is used to prove its utility and effectiveness.
文摘An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.