期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Investigation and Numerical Simulation on Interfacial Carbon Diffusion of Diamond Tool and Ferrous Metals 被引量:3
1
作者 邹莱 ZHOU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期307-314,共8页
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m... We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning. 展开更多
关键词 diamond tool carbon diffusion numerical simulations ferrous metals ultrasonic vibration assisted cutting
下载PDF
Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices
2
作者 Aritra Acharyya Suranjana Banerjee J.P.Banerjee 《Journal of Semiconductors》 EI CAS CSCD 2014年第3期39-49,共11页
An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both mill... An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both millimetre-wave(mm-wave) and terahertz(THz) frequencies. A rigorous large-signal(L-S) simulation based on the non-sinusoidal voltage excitation(NSVE) model developed earlier by the authors is used in this study. At first,a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulationresultsshowthattheDDRdiamondIMPATTdevicedeliversapeakRFpowerof7.79Wwithan18.17%conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to6.19mWand8.17%respectively,taking50%voltagemodulation.AcomparativestudyofDDRIMPATTsbasedon diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies. 展开更多
关键词 diamond IMPATTs DDR large-signal simulation millimeter-wave terahertz
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部